Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I'm using the R wrapper for XGBoost. In the function xgb.cv, there is a folds parameter with the description

list provides a possibility of using a list of pre-defined CV folds (each element must be a vector of fold's indices). If folds are supplied, the nfold and stratified parameters would be ignored.

So, do I just specify the indices for training the model and assume the rest will be for testing? For example, if my training data is something like

    Feature1 Feature2 Target
 1:        2       10     10
 2:        7        1      9
 3:        8        2      3
 4:        8       10      7
 5:        8        2      9
 6:        3        7      3

and I want to cross validate using (train, test) indices as ((1,2,3), (4,5,6)) and ((4,5,6), (1,2,3)) do I set folds=list(c(1,2,3), c(4,5,6))?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
743 views
Welcome To Ask or Share your Answers For Others

1 Answer

Through some trial and error I figured out that xgboost is using the passed indices as indices of the test folds. Confirmed this by noticing the current devel version of xgboost explicitly states it in the documentation.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...