Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have a data set containing (amongst others) multiple columns with dates and corresponding values (repeated measurements). Is there a way to turn this into a long data set containing (the others and) only two columns - one for dates and one for values - using tidyr?

The following code produces an example data frame:

df <- data.frame(
   id = 1:10,
   age = sample(100, 10),
   date1 = as.Date('2015-09-22') - sample(100, 10),
   value1 = sample(100, 10),
   date2 = as.Date('2015-09-22') - sample(100, 10),
   value2 = sample(100, 10),
   date3 = as.Date('2015-09-22') - sample(100, 10),
   value3 = sample(100, 10))

The input table could (chance of 1 in 1.8x10^138) look like this:

   id age      date1 value1      date2 value2      date3 value3
1   1  32 2015-08-01     37 2015-07-15     38 2015-09-09     81
2   2  33 2015-07-22     16 2015-06-26      1 2015-09-12     58
...
10 10  64 2015-07-23     78 2015-08-25     70 2015-08-05     90

What I finally want is this:

   id age       date  value
1   1  32 2015-08-01     37
2   1  32 2015-07-15     38
3   1  32 2015-09-09     81
4   2  33 2015-07-22     16
5   2  33 2015-06-26      1
...
30 10  64 2015-08-05     90

Any help doing this in tidyr or reshape would be greatly appreciated.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
706 views
Welcome To Ask or Share your Answers For Others

1 Answer

There should be some efficient way, but this is one way.

Working separately for date and value,

#for date
df.date<-df%>%select(id, age,date1,date2, date3)%>%melt(id.var=c("id", "age"), value.name="date")
#for val
df.val<-df%>%select(id, age,value1,value2, value3)%>%melt(id.var=c("id", "age"), value.name="value")

Now join,

df2<-full_join(df.date, df.val, by=c("id", "age"))
df2%>%select(-variable.x, -variable.y)

 id age       date value
1   1  40 2015-07-19    28
2   1  40 2015-07-19    49
3   1  40 2015-07-19    24
4   2  33 2015-06-27    99
5   2  33 2015-06-27    18
6   2  33 2015-06-27    26
7   3  75 2015-07-07    63
8   3  75 2015-07-07    74
9   3  75 2015-07-07    72

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...