is the map static or dynamic?
For static maps
why not store tesselated polygons in some file and not tesselate it again ...
For dynamic maps
would be may be faster using different rendering approach that do not need tesselation to convex polygons like this:
- clear screen with island color
render islands outlines
not filled primitives like GL_LINE_LOOP
do not need to tesselate at all.
fill in the watter
simply start from point outside any polygon and flood fill the map with watter. If the flood fill is coded right (no recursion and fill with lines instead of pixels) then it should take just few [ms]. The problem with this approach is that you need to access the rendered stuff so you need at least 2 passes of rendering. Also implementing flood filling on GPU is not easy.
There are also alternatives like storing edge points on CPU side and pre-compute the watter filling on CPU side. In that case you need to have list of x
coordinates for every y
scan line of image that will hold the start and end points for each land. then just fill in the gaps in single render pass...
This should be rendered in RT easily
[Edit] Grow Fill test Demo
Did some testing with iterative grow filling on your data. There are some problems with the dataset like your polygons overlap which is possibly just holes but as I do not have filling color info but just object ID instead so it is hard to say. Anyway that can be repaired too. Here small win 32 VCL/OpenGL/SW demo with approach I mentioned above (Dynamic maps):
- Win32 Demo use Slow download which is free and no need for any registration just input the code.
It is Win32 stand alone no install using OpenGL+VCL
- mouse wheel zooms
- Shift+mouse wheel selects different polygon
- mouse+Left button pans
There are few issues which can be repaired but as proof of concept it works well. I compiled your ASCII map into binary form (so it loads faster but the form is the same just count of polygons, then count of points per polygon and the points x,y as 64 bit doubles. Counts are 32bit ints)
I am using my own OpenGL engine (which I can not share) so you would need to encode the stuff (like OpenGL,FBO and Texture init/set/usage). Anyway here the C++ code for this VCL app:
//$$---- Form CPP ----
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "win_main.h"
#include "gl/OpenGL3D_double.cpp"
#include "performance.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
// VCL
TMain *Main;
// OpenGL
OpenGLtime tim;
OpenGLscreen scr;
OpenGL_FBO fbo;
GLuint txr_map=-1;
// miscel
int pn=0; // vertex count
double px0,px1,py0,py1; // bbox
double mx,my; // mouse
double view[16],iview[16]; // direct and inverse Modelview matrix
double zoom=1.0,dzoom=1.1,viewx=0.0,viewy=0.0; // view
int index=0; // selected polygon
bool _redraw=true;
DWORD cl_water=0xFFEE9040;
DWORD cl_land =0xFF70A0B0;
DWORD cl_edge =0xFF000000;
DWORD cl_sel =0xFF00FFFF;
AnsiString tcpu,tgpu;
// map
List< List<double> > polygon; // loaded polygons
List<double> water; // points with water from last frame
//---------------------------------------------------------------------------
void view_compute()
{
double x,y;
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
x=divide(1.0,px1-px0)*scr.aspect;
y=divide(1.0,py1-py0)*scr._aspect;
if (x>y) x=y;
x*=zoom;
glTranslated(viewx,viewy,0.0);
glScaled(x,x,1.0);
glTranslated(-0.5*(px0+px1),-0.5*(py0+py1),0.0);
glGetDoublev(GL_MODELVIEW_MATRIX,view);
glPopMatrix();
matrix_inv(iview,view);
}
//---------------------------------------------------------------------------
void map_load_csv(AnsiString filename)
{
BYTE *dat;
AnsiString lin,s,s0;
int ix,i,l,hnd,siz,adr;
double x,y;
List< AnsiString > id;
id.allocate(128); id.num=0;
polygon.allocate(128); polygon.num=0;
hnd=FileOpen(filename,fmOpenRead); if (hnd<0) return;
siz=FileSeek(hnd,0,2);
FileSeek(hnd,0,0);
dat=new BYTE[siz]; if (dat==NULL) { FileClose(hnd); return; }
siz=FileRead(hnd,dat,siz);
FileClose(hnd);
adr=0; txt_load_lin(dat,siz,adr,true);
for (ix=-1,s0="";adr<siz;)
{
lin=txt_load_lin(dat,siz,adr,true);
if (lin=="") continue;
i=1; l=lin.Length();
s=str_load_str(lin,i,true); s=s.SubString(2,s.Length()-2);
if (s0!=s)
{
for (ix=0;ix<id.num;ix++) if (id[ix]==s) break;
if (ix>=id.num)
{
ix=id.num;
id.add(s);
polygon.add();
polygon[ix].allocate(256);
polygon[ix].num=0;
}
s0=s;
}
s=str_load_str(lin,i,true); s=s.SubString(2,s.Length()-2); x=str2flt(s);
s=str_load_str(lin,i,true); s=s.SubString(2,s.Length()-2); y=str2flt(s);
polygon[ix].add(x);
polygon[ix].add(y);
}
}
//---------------------------------------------------------------------------
void map_save_bin(AnsiString filename)
{
int hnd,i;
hnd=FileCreate(filename); if (hnd<0) return;
FileWrite(hnd,&polygon.num,4);
for (i=0;i<polygon.num;i++)
{
FileWrite(hnd,&polygon[i].num,4);
FileWrite(hnd,polygon[i].dat,polygon[i].num*8);
}
FileClose(hnd);
}
//---------------------------------------------------------------------------
void map_load_bin(AnsiString filename)
{
int hnd,i,n,m;
hnd=FileOpen(filename,fmOpenRead); if (hnd<0) return;
FileRead(hnd,&n,4);
polygon.allocate(n); polygon.num=n;
for (i=0;i<n;i++)
{
FileRead(hnd,&m,4);
polygon[i].allocate(m); polygon[i].num=m;
FileRead(hnd,polygon[i].dat,m*8);
}
FileClose(hnd);
}
//---------------------------------------------------------------------------
void map_bbox()
{
int ix,i,n;
double *p,a;
pn=0;
px0=px1=polygon[0][0];
py0=py1=polygon[0][1];
for (ix=0;ix<polygon.num;ix++)
{
p=polygon[ix].dat;
n=polygon[ix].num; pn+=n>>1;
for (i=0;i<n;i+=2)
{
a=*p; p++; if (px0>a) px0=a; if (px1<a) px1=a;
a=*p; p++; if (py0>a) py0=a; if (py1<a) py1=a;
}
}
}
//---------------------------------------------------------------------------
void map_draw()
{
int ix,i,n;
double *p,a;
// glLineWidth(2.0);
for (ix=0;ix<polygon.num;ix++)
{
p=polygon[ix].dat;
n=polygon[ix].num;
if (ix==index) glColor4ubv((BYTE*)&cl_sel);
else glColor4ubv((BYTE*)&cl_edge);
glBegin(GL_LINE_LOOP);
for (i=0;i<n;i+=2,p+=2) glVertex2dv(p);
glEnd();
}
// glLineWidth(1.0);
}
//---------------------------------------------------------------------------
void TMain::draw()
{
tbeg();
tim.tbeg();
// [ render outline to texture ]
fbo.bind(scr);
glClearColor(divide((cl_land)&255,255),divide((cl_land>>8)&255,255),divide((cl_land>>16)&255,255),1.0);
scr.cls();
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(view);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (water.num) // water start points for grow fill
{
// add water around txr border
glBegin(GL_POINTS);
glColor4ubv((BYTE*)&cl_water);
for (int i=0;i<water.num;i+=2)
glVertex2dv(water.dat+i);
glEnd();
}
map_draw();
scr.exe();
fbo.unbind(scr);
// [ copy GL texture to CPU image ]
scr.txrs.txr_ld(txr_map);
// [ create ScanLines for direct pixel access pyx[y][x] ]
int e,x,y,xs,ys; DWORD **pyx,*p,c0,c1; double a[3];
xs=scr.txrs.txr.xs; // texture resolution (rounded up to power of 2)
ys=scr.txrs.txr.ys;
pyx=new DWORD*[ys];
p=(DWORD*)scr.txrs.txr.txr; // CPU image pixel data
for (y=0;y<ys;y++,p+=xs) pyx[y]=p; // scan line pointers
// [ Grow Fill water ]
c0=rgb2bgr(cl_land);
c1=rgb2bgr(cl_water);
if (water.num==0) // first frame view must be set so water is on all borders
{
// add water around txr border
for (x= 1,y=0;y<ys;y++) pyx[y][x]=c1;
for (x=xs-2,y=0;y<ys;y++) pyx[y][x]=c1;
for (y= 1,x=0;x<xs;x++) pyx[y][x]=c1;
for (y=ys-2,x=0;x<xs;x++) pyx[y][x]=c1;
}
for (e=1;e;) // grow it
for (e=0,y=1;y<ys-1;y++)
for ( x=1;x<xs-1;x++)
if (pyx[y][x]==c0)
if ((pyx[y-1][x]==c1)
||(pyx[y+1][x]==c1)
||(pyx[y][x-1]==c1)
||(pyx[y][x+1]==c1)) { e=1; pyx[y][x]=c1; }
// create water start points for next frame
water.num=0;
e=4; // step
for (y=1;y<ys-2;y+=e)
for (x=1;x<xs-2;x+=e)
if ((pyx[y-1][x-1]==c1) // enough water around (x,y)?
&&(pyx[y-1][x ]==c1)
&&(pyx[y-1][x+1]==c1)
&&(pyx[y ][x-1]==c1)
&&(pyx[y ][x ]==c1)
&&(pyx[y ][x+1]==c1)
&&(pyx[y+1][x-1]==c1)
&&(pyx[y+1][x ]==c1)
&&(pyx[y+1][x+1]==c1))
{
// convert pixel(x,y) -> World(x,y)
a[0]=divide(2.0*x,xs)-1.0;
a[1]=divide(2.0*y,ys)-1.0;
a[2]=0.0;
matrix_mul_vector(a,iview,a);
water.add(a[0]);
water.add(a[1]);
}
// [ copy CPU image back to GL texture ]
delete[] pyx; // release ScanLines no need for them anymore
scr.txrs.txr.rgb2bgr(); // I got RGB/BGR mismatch somewhere
scr.txrs.txr_st(txr_map); // scr.txrs.txr.txr holds pointer to 32bit pixel data
scr.exe();
// [ render texture to screen ]
scr.cls();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
scr.txrs.bind(txr_map);
glColor3f(1.0,1.0,1.0);
glBegin(GL_QUADS);
glTexCoord2f(0.0,0.0); glVertex2f(-1.0,-1.0);
glTexCoord2f(1.0,0.0); glVertex2f(+1.0,-1.0);
glTexCoord2f(1.0,1.0); glVertex2f(+1.0,+1.0);
glTexCoord2f(0.0,1.0); glVertex2f(-1.0,+1.0);
glEnd();
scr.txrs.unbind();
// [info]
glColor3f(1.0,1.0,1.0);
scr.text_init_pix(1.0);
scr.text(tcpu);
scr.text(tgpu);
scr.text_exit();
scr.exe();
scr.rfs();
tend(); tcpu=" CPU time: "+tstr(1);
tim.tend();
}
//--------------------------------------------------------------------