Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

The Armadillo C++ linear algebra library documentation states one of the reasons for developing the library in C++ to be "ease of parallelisation via OpenMP present in modern C++ compilers", but the Armadillo code does not use OpenMP. How can I gain the benefits of parallelisation with Armadillo? Is this achieved by using one of the high-speed LAPACK and BLAS replacements? My platform is Linux, Intel processor but I suspect there is a generic answer to this question.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
665 views
Welcome To Ask or Share your Answers For Others

1 Answer

Okay so it appears that parallelisation is indeed achieved by using the high-speed LAPACK and BLAS replacements. On Ubuntu 12.04 I installed OpenBLAS using the package manager and built the Armadillo library from the source. The examples in the examples folder built and run and I can control the number of cores using the OPENBLAS_NUM_THREADS environment variable.

I created a small project openblas-benchmark which measures the performance increase of Armadillo when computing a matrix product C=AxB for various size matrices but I could only test it on a 2-core machine so far.

The performance plot shows nearly 50% reduction in execution time for matrices larger than 512x512. Note that both axes are logarithmic; each grid line on the y axis represents a doubling in execution time. Performance plot


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...