I am searching for a way to terminate an apply function early on some condition. Using a for loop, something like:
FDP_HCFA = function(FaultMatrix, TestCosts, GenerateNeighbors, RandomSeed) {
set.seed(RandomSeed)
## number of tests, mind the summary column
nT = ncol(FaultMatrix) - 1
StartingSequence = sample(1:nT)
BestAPFD = APFD_C(StartingSequence, FaultMatrix, TestCosts)
BestPrioritization = StartingSequence
MakingProgress = TRUE
NumberOfIterations = 0
while(MakingProgress) {
BestPrioritizationBefore = BestPrioritization
AllCurrentNeighbors = GenerateNeighbors(BestPrioritization)
for(CurrentNeighbor in AllCurrentNeighbors) {
CurrentAPFD = APFD_C(CurrentNeighbor, FaultMatrix, TestCosts)
if(CurrentAPFD > BestAPFD) {
BestAPFD = CurrentAPFD
BestPrioritization = CurrentNeighbor
break
}
}
if(length(union(list(BestPrioritizationBefore),
list(BestPrioritization))) == 1)
MakingProgress = FALSE
NumberOfIterations = NumberOfIterations + 1
}
}
I would like to rewrite this function using some derivation of apply
. In particular, terminating the evaluation of the first individual with increased fitness, thereby avoiding the cost of considering the rest of the population.