for a project I am trying to just make a very simple AI that can predict trends of stocks 1 day in advance given 30 days of previous data
Here is the code I am using to get the stock data:
import numpy as np
import pandas as pd
from pandas_datareader import data as pdr
import datetime
#Data Source
import yfinance as yf
yf.pdr_override()
TICKER = "LULU"
startDate = datetime.datetime(2020,1,1)
endDate = datetime.date.today()
print(startDate.strftime("%Y-%m-%d"))
print(endDate.strftime("%Y-%m-%d"))
data = pdr.get_data_yahoo(TICKER, start=startDate.strftime("%Y-%m-%d"), end = endDate.strftime("%Y-%m-%d"), interval='1d')
As of now, the data (stored in the variable data
) is structured as (in a pandas dataframe I think):
Open High Low Close Adj Close Volume
Date
2020-01-02 232.899994 233.470001 231.770004 233.419998 233.419998 1449300
2020-01-03 231.240005 234.500000 230.229996 232.639999 232.639999 1315400
2020-01-06 231.490005 235.529999 230.800003 235.429993 235.429993 1460700
2020-01-07 235.500000 236.850006 233.339996 233.699997 233.699997 1367900
2020-01-08 234.880005 238.009995 234.009995 237.270004 237.270004 1883900
... ... ... ... ... ... ...
2021-01-04 351.670013 356.829987 346.410004 356.399994 356.399994 2015300
2021-01-05 357.890015 369.440002 357.380005 366.500000 366.500000 2122900
2021-01-06 362.109985 367.600006 357.480011 363.250000 363.250000 1170800
2021-01-07 366.869995 374.200012 364.600006 367.290009 367.290009 1103000
2021-01-08 367.359985 370.540009 362.589996 365.459991 365.459991 994300
Is there a way to model an LSTM using Tensorflow and/or Keras to make it so I can input the past 30 days of pricing data (Open, High, Low, Close, Adj Close, Volume) for each day, and get a single closing price prediction for the following day?
P.S. I am aware about the many limitations there are about predicting the stock market but I am just trying to do it as an experiment.
Thank you!
question from:https://stackoverflow.com/questions/65648097/tensorflow-how-to-structure-lstm-model