I was working on an image recognition problem. After fine-tuned VGG19 and added few layers and trained the model. Upon achieving the best test accuracy, I saved the model, removed the last 6 layers, and extracted the activations of the last fully connected layer using the following code.
ROWS,COLS = 669,1026
input_shape = (ROWS, COLS, 3)
# train_data_dir = '/home/spectrograms/train'
validation_data_dir = '/home/spectrograms/test'
nb_train_samples = 791
nb_validation_samples = 198
# epochs = 200
batch_size = 10
if K.image_data_format() == 'channels_first':
input_shape = (3, ROWS, COLS)
else:
input_shape = (ROWS, COLS,3)
test_datagen = ImageDataGenerator(rescale=1. / 255)
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(ROWS, COLS),
batch_size=batch_size,
class_mode='binary')
model = Model(inputs=model.inputs, outputs=model.layers[-6].output)
predict = model.predict_generator(validation_generator,steps = 10)
print(predict[10])
print(predict[10].shape)
But the output vector has a lot of zeros.
[5.77765644e-01 2.44531885e-01 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
2.99371660e-01 8.27999532e-01 2.34099194e-01 2.67183155e-01
0.00000000e+00 1.95847541e-01 4.49438214e-01 1.00336084e-02
0.00000000e+00 0.00000000e+00 4.63756740e-01 0.00000000e+00
0.00000000e+00 1.15372933e-01 0.00000000e+00 0.00000000e+00
1.13927014e-01 6.74777776e-02 7.49553144e-01 0.00000000e+00
6.73675537e-02 2.85279214e-01 0.00000000e+00 0.00000000e+00
1.84553280e-01 4.57495511e-01 0.00000000e+00 0.00000000e+00
5.35506964e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
2.92950690e-01 0.00000000e+00 5.27026653e-01 0.00000000e+00
0.00000000e+00 0.00000000e+00 3.94881278e-01 0.00000000e+00
5.37508354e-02 6.67039156e-02 1.16688050e-01 6.52413011e-01
3.44565332e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.10359691e-01 3.63592118e-01
9.89193693e-02 1.15959466e-01 0.00000000e+00 1.57176346e-01
0.00000000e+00 0.00000000e+00 0.00000000e+00 2.90686011e-01
0.00000000e+00 6.03572190e-01 1.97682872e-01 1.57113865e-01
0.00000000e+00 2.84446061e-01 1.26254544e-01 0.00000000e+00
0.00000000e+00 5.51187336e-01 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.11384936e-01 1.67153805e-01 2.63090044e-01 0.00000000e+00
9.35753658e-02 9.16089058e-01 1.90610379e-01 0.00000000e+00
0.00000000e+00 0.00000000e+00 3.04680824e-01 2.47930676e-01
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.50975913e-01 3.60320956e-02 0.00000000e+00 3.47187579e-01
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
3.01374853e-01 0.00000000e+00 2.38310188e-01 0.00000000e+00
0.00000000e+00 0.00000000e+00 3.16582739e-01 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 8.17666354e-04
2.30050087e-01 4.66496646e-01 0.00000000e+00 0.00000000e+00
1.05043598e-01 0.00000000e+00 6.77903090e-03 3.72976154e-01]
Is it normal? Or am I doing something wrong?
question from:https://stackoverflow.com/questions/65867552/so-many-null-value-features-while-doing-feature-extraction-using-vgg19