Here's a possible both simple and very efficient solution using data.table
library(data.table) ## v >= 1.9.6
dcast(setDT(df), month ~ student, value.var = c("A", "B"))
# month Amy_A Bob_A Amy_B Bob_B
# 1: 1 9 8 6 5
# 2: 2 7 6 7 6
# 3: 3 6 9 8 7
Or a possible tidyr
solution
df %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
spread(temp, value)
# month Amy_A Amy_B Bob_A Bob_B
# 1 1 9 6 8 5
# 2 2 7 7 6 6
# 3 3 6 8 9 7
EDIT 22/10/2019
As mentioned in comments by @gjabel, newer tidyr versions (v1.0.0+)
have now pivot_wider
and pivot_longer
functions (currently in maturing state), hence, a newer approach would be
pivot_wider(data = df,
id_cols = month,
names_from = student,
values_from = c("A", "B"))
# # A tibble: 3 x 5
# month A_Amy A_Bob B_Amy B_Bob
# <int> <dbl> <dbl> <dbl> <dbl>
# 1 1 9 8 6 5
# 2 2 7 6 7 6
# 3 3 6 9 8 7