I have an analysis code that does some heavy numerical operations using numpy. Just for curiosity, tried to compile it with cython with little changes and then I rewrote it using loops for the numpy part.
To my surprise, the code based on loops was much faster (8x). I cannot post the complete code, but I put together a very simple unrelated computation that shows similar behavior (albeit the timing difference is not so big):
Version 1 (without cython)
import numpy as np
def _process(array):
rows = array.shape[0]
cols = array.shape[1]
out = np.zeros((rows, cols))
for row in range(0, rows):
out[row, :] = np.sum(array - array[row, :], axis=0)
return out
def main():
data = np.load('data.npy')
out = _process(data)
np.save('vianumpy.npy', out)
Version 2 (building a module with cython)
import cython
cimport cython
import numpy as np
cimport numpy as np
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef _process(np.ndarray[DTYPE_t, ndim=2] array):
cdef unsigned int rows = array.shape[0]
cdef unsigned int cols = array.shape[1]
cdef unsigned int row
cdef np.ndarray[DTYPE_t, ndim=2] out = np.zeros((rows, cols))
for row in range(0, rows):
out[row, :] = np.sum(array - array[row, :], axis=0)
return out
def main():
cdef np.ndarray[DTYPE_t, ndim=2] data
cdef np.ndarray[DTYPE_t, ndim=2] out
data = np.load('data.npy')
out = _process(data)
np.save('viacynpy.npy', out)
Version 3 (building a module with cython)
import cython
cimport cython
import numpy as np
cimport numpy as np
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef _process(np.ndarray[DTYPE_t, ndim=2] array):
cdef unsigned int rows = array.shape[0]
cdef unsigned int cols = array.shape[1]
cdef unsigned int row
cdef np.ndarray[DTYPE_t, ndim=2] out = np.zeros((rows, cols))
for row in range(0, rows):
for col in range(0, cols):
for row2 in range(0, rows):
out[row, col] += array[row2, col] - array[row, col]
return out
def main():
cdef np.ndarray[DTYPE_t, ndim=2] data
cdef np.ndarray[DTYPE_t, ndim=2] out
data = np.load('data.npy')
out = _process(data)
np.save('vialoop.npy', out)
With a 10000x10 matrix saved in data.npy, the times are:
$ python -m timeit -c "from version1 import main;main()"
10 loops, best of 3: 4.56 sec per loop
$ python -m timeit -c "from version2 import main;main()"
10 loops, best of 3: 4.57 sec per loop
$ python -m timeit -c "from version3 import main;main()"
10 loops, best of 3: 2.96 sec per loop
Is this expected or is there an optimization that I am missing? The fact that version 1 and 2 gives the same result is somehow expected, but why version 3 is faster?
Ps.- This is NOT the calculation that I need to make, just a simple example that shows the same thing.
See Question&Answers more detail:os