Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I am attempting to understand Boost.Asio, with the intention of potentially implementing a signaling system using condition variables in conjunction with Boost.Asio.

I have seen the other StackOverflow questions boost asio asynchronously waiting on a condition variable, boost::asio async condition, and boost condition variable issue, but none of these questions/answers have satisfactorily touched on an essential question that I have: Is it true that, and/or is there a fundamental reason why, Boost.Asio is not applicable to, or a natural fit with, condition variables?

My thinking is that condition variables are internally implemented using operating-system level synchronization objects (for example, boost::thread::condition_variable on Windows uses a Windows OS semaphore). Because, to my current understanding, boost::asio::io_service is intended to encapsulate OS-level synchronization objects, condition variables would therefore seem to be a natural fit.

It is true that unlike file operations and socket operations, there is typically never a callback function at the operating system level associated with a signaled condition (I think - I am not sure about this). However, it would seem simple enough to implement such a callback handler within Boost.Asio by simply requiring the user to provide a callback function that is to be called when a condition variable is signaled - just as users must provide a completion handler routine for other boost::asio::io_service services.

For example (this is just a quick thought, not a complete prototype - it does not include sufficient parameters to deal with notify_one() vs. notify_all(), doesn't indicate how the service knows when to exit, and likely has other glaring omissions or flaws):

void condition_handler_function() {}
boost::asio::io_service service;
boost::mutex mut;
boost::condition_variable cond;

// The following class is **made up by me** - would such a class be a good idea?
boost::asio::io_service::condition_service
             condserv(service, cond, mut, condition_handler_function); 

condserv.async_wait_on_signal();

service.run(); // when condition variable is signaled by notify_one(),
               // 'handler_function()' would be called


// ... in some other thread, later:
cond.notify_one(); // This would trigger 'handler_function()'
                   // in this theoretical code

Perhaps, if I tried to fill in the missing details noted above the code snippet, it would become clear to me that this could not work in a clean way. However, this effort is non-trivial.

Therefore, I would like to post the question here. Is there a good reason why condition variables are not supported by Boost.Asio?

ADDENDUM

I have changed the title of the post to reference "Event-based interface", since Tanner's answer, below, has clarified to me that it is really an Event-based interface that I am asking about (not really condition variables).

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
241 views
Welcome To Ask or Share your Answers For Others

1 Answer

Boost.Asio is a C++ library for network and low-level I/O programming. As such, OS-level synchronization objects, such as condition variables, are outside of the scope of the library, and a much better fit for Boost.Thread. The Boost.Asio author often presents the boost::asio::io_service as the bridge or link between the application and the OS. While this may be an over simplification, it is within the context of the OS's I/O services.

Asynchronous programming already has an innate complexity due to the separation in time and space between operation initiation and completion. Strands provided a fairly clean solution to provide strict sequential invocation of handlers, without the need of explicit locking. As the locking is both implicit and thread-safe, application code can use strands without the fear of deadlocking. On the other hand, having boost::asio::io_service::condition_service perform implicit synchronization on an externally provided object may turn a complex library into a complicated one. It may not be clear to the application developer what mutex on which the handler was synchronized, and the state of the mutex. Additionally, it introduces the ability for applications to more easily deadlock the event processing loop due to the implicit locking.


If event-based handler invocation needs to occur, then one fairly simple alternative is use the same approach Boost.Asio's timeout server example uses: boost::asio::deadline_timer. A deadline_timer's expiry time can be set to posix_time::pos_infin, causing an async_wait's handler to only be invoked once the timer has been canceled:

  • cancel() could function as notify_all(), where all outstanding handlers are queued for invocation.
  • cancel_one() could function as notify_one(), where a max of one outstanding handler is queued for invocation.

A simple example, ignoring error code handling, is as follows:

#include <iostream>

#include <boost/asio.hpp>
#include <boost/thread.hpp>

class event
{
public:
  explicit
  event(boost::asio::io_service& io_service) 
    : timer_(io_service)
  {
    // Setting expiration to infinity will cause handlers to
    // wait on the timer until cancelled.
    timer_.expires_at(boost::posix_time::pos_infin);
  }

  template <typename WaitHandler>
  void async_wait(WaitHandler handler)
  {
    // bind is used to adapt the user provided handler to the deadline 
    // timer's wait handler type requirement.
    timer_.async_wait(boost::bind(handler));
  }

  void notify_one() { timer_.cancel_one(); }
  void notify_all() { timer_.cancel();     }

private:
  boost::asio::deadline_timer timer_;
};

void on_event() { std::cout << "on_event" << std::endl; }

int main()
{
  boost::asio::io_service io_service;
  event event(io_service);

  // Add work to service.
  event.async_wait(&on_event);

  // Run io_service.
  boost::thread thread(boost::bind(&boost::asio::io_service::run,
                       &io_service));

  // Trigger event, causing the on_event handler to run.
  event.notify_one();

  thread.join();  
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share

548k questions

547k answers

4 comments

86.3k users

...