The release of dplyr 0.7 includes a major overhaul of programming with dplyr. I read this document carefully, and I am trying to understand how it will impact my use of dplyr.
Here is a common idiom I use when building reporting and aggregation functions with dplyr:
my_report <- function(data, grouping_vars) {
data %>%
group_by_(.dots=grouping_vars) %>%
summarize(x_mean=mean(x), x_median=median(x), ...)
}
Here, grouping_vars
is a vector of strings.
I like this idiom because I can pass in string vectors from other places, say a file or a Shiny app's reactive UI, but it's also not too bad for interactive work either.
However, in the new programming with dplyr vignette, I see no examples of how something like this can be done with the new dplyr. I only see examples of how passing strings is no longer the correct approach, and I have to use quosures instead.
I'm happy to adopt quosures, but how exactly do I get from strings to the quosures expected by dplyr here? It doesn't seem feasible to expect the entire R ecosystem to provide quosures to dplyr - lots of times we're going to get strings and they'll have to be converted.
Here is an example showing what you're now supposed to do, and how my old idiom doesn't work:
library(dplyr)
grouping_vars <- quo(am)
mtcars %>%
group_by(!!grouping_vars) %>%
summarise(mean_cyl=mean(cyl))
#> # A tibble: 2 × 2
#> am mean_cyl
#> <dbl> <dbl>
#> 1 0 6.947368
#> 2 1 5.076923
grouping_vars <- "am"
mtcars %>%
group_by(!!grouping_vars) %>%
summarise(mean_cyl=mean(cyl))
#> # A tibble: 1 × 2
#> `"am"` mean_cyl
#> <chr> <dbl>
#> 1 am 6.1875
See Question&Answers more detail:os