Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I'm looking for an algorithm, or at least theory of operation on how you would find similar text in two or more different strings...

Much like the question posed here: Algorithm to find articles with similar text, the difference being that my text strings will only ever be a handful of words.

Like say I have a string: "Into the clear blue sky" and I'm doing a compare with the following two strings: "The color is sky blue" and "In the blue clear sky"

I'm looking for an algorithm that can be used to match the text in the two, and decide on how close they match. In my case, spelling, and punctuation are going to be important. I don't want them to affect the ability to discover the real text. In the above example, if the color reference is stored as "'sky-blue'", I want it to still be able to match. However, the 3rd string listed should be a BETTER match over the second, etc.

I'm sure places like Google probably use something similar with the "Did you mean:" feature...

* EDIT *
In talking with a friend, he worked with a guy who wrote a paper on this topic. I thought I might share it with everyone reading this, as there are some really good methods and processes described in it...

Here's the link to his paper, I hope it is helpful to those reading this question, and on the topic of similar string algorithms.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
189 views
Welcome To Ask or Share your Answers For Others

1 Answer

Levenshtein distance will not completely work, because you want to allow rearrangements. I think your best bet is going to be to find best rearrangement with levenstein distance as cost for each word.

To find the cost of rearrangement, kinda like the pancake sorting problem. So, you can permute every combination of words (filtering out exact matches), with every combination of other string, trying to minimize a combination of permute distance and Levenshtein distance on each word pair.

edit: Now that I have a second I can post a quick example (all 'best' guesses are on inspection and not actually running the algorithms):

original strings             | best rearrangement w/ lev distance per word
Into the clear blue sky      |    Into the c_lear blue sky 
The color is sky blue        |    is__ the colo_r blue sky

R_dist = dist( 3 1 2 5 4 ) --> 3 1 2 *4 5* --> *2 1 3* 4 5 --> *1 2* 3 4 5 = 3  
L_dist = (2D+S) + (I+D+S) (Total Subsitutions: 2, deletions: 3, insertion: 1)  

(notice all the flips include all elements in the range, and I use ranges where Xi - Xj = +/- 1)

Other example

original strings             | best rearrangement w/ lev distance per word
Into the clear blue sky      |   Into the clear blue sky 
In the blue clear sky        |   In__ the clear blue sky

R_dist = dist( 1 2 4 3 5 ) -->  1 2 *3 4* 5  = 1
L_dist = (2D) (Total Subsitutions: 0, deletions: 2, insertion: 0)

And to show all possible combinations of the three...

The color is sky blue         |    The colo_r is sky blue
In the blue clear sky         |    the c_lear in sky blue

R_dist = dist( 2 4 1 3 5 ) --> *2 3 1 4* 5 --> *1 3 2* 4 5 --> 1 *2 3* 4 5 = 3
L_dist = (D+I+S) + (S) (Total Subsitutions: 2, deletions: 1, insertion: 1)

Anyway you make the cost function the second choice will be lowest cost, which is what you expected!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...