Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Consider this simple example

library(dplyr)
library(ggplot2)

dataframe <- data_frame(id = c(1,2,3,4),
                        group = c('a','b','c','c'),
                        value = c(200,400,120,300))

# A tibble: 4 x 3
     id group value
  <dbl> <chr> <dbl>
1     1     a   200
2     2     b   400
3     3     c   120
4     4     c   300

Here I want to write a function that takes the dataframe and the grouping variable as input. Ideally, after grouping and aggregating I would like to print a ggpplot chart.

This works:

get_charts2 <- function(data, mygroup){

  quo_var <- enquo(mygroup)

  df_agg <- data %>% 
    group_by(!!quo_var) %>% 
    summarize(mean = mean(value, na.rm = TRUE),
              count = n()) %>% 
    ungroup()

  df_agg
}



> get_charts2(dataframe, group)
# A tibble: 3 x 3
  group  mean count
  <chr> <dbl> <int>
1     a   200     1
2     b   400     1
3     c   210     2

Unfortunately, adding ggplot into the function above FAILS

 get_charts1 <- function(data, mygroup){

  quo_var <- enquo(mygroup)

  df_agg <- data %>% 
    group_by(!!quo_var) %>% 
    summarize(mean = mean(value, na.rm = TRUE),
              count = n()) %>% 
  ungroup()

  ggplot(df_agg, aes(x = count, y = mean, color = !!quo_var, group = !!quo_var)) + 
    geom_point() +
    geom_line() 
}


> get_charts1(dataframe, group)
Error in !quo_var : invalid argument type

I dont understand what is wrong here. Any ideas? Thanks!

EDIT: interesting follow-up here how to create factor variables from quosures in functions using ggplot and dplyr?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
781 views
Welcome To Ask or Share your Answers For Others

1 Answer

ggplot does not yet support tidy eval syntax (you can't use the !!). You need to use more traditional standard evaluation calls. You can use aes_q in ggplot to help with this.

get_charts1 <- function(data, mygroup){

  quo_var <- enquo(mygroup)

  df_agg <- data %>% 
    group_by(!!quo_var) %>% 
    summarize(mean = mean(value, na.rm = TRUE),
              count = n()) %>% 
    ungroup()

  ggplot(df_agg, aes_q(x = quote(count), y = quote(mean), color = quo_var, group = quo_var)) + 
    geom_point() +
    geom_line() 
}


get_charts1(dataframe, group)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...