Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I'm using the svars package to generate some IRF plots. The plots are rendered using ggplot2, however I need some help with changing some of the aesthetics.

Is there any way I can change the fill and alpha of the shaded confidence bands, as well as the color of the solid line? I know in ggplot2 you can pass fill and alpha arguments to geom_ribbon (and col to geom_line), just unsure of how to do the same within the plot function of this package's source code.

# Load Dataset and packages
library(tidyverse)
library(svars)
data(USA)

# Create SVAR Model
var.model <- vars::VAR(USA, lag.max = 10, ic = "AIC" )
svar.model <- id.chol(var.model)

# Wild Bootstrap

cores <- parallel::detectCores() - 1
boot.svar <- wild.boot(svar.model, n.ahead = 30, nboot = 500, nc = cores)

# Plot the IRFs

plot(boot.svar)

enter image description here

I'm also looking at the command for a historical decomposition plot (see below). Is there any way I could omit the first two facets and plot only the bottom three lines on the same facet?

hist.decomp <- hd(svar.model, series = 1)
plot(hist.decomp)

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
4.6k views
Welcome To Ask or Share your Answers For Others

1 Answer

Your first desired result is easily achieved by resetting the aes_params after calling plot. For your second goal. There is probably an approach to manipulate the ggplot object. Instead my approach below constructs the plot from scratch. Basically I copy and pasted the data wrangling code from vars:::plot.hd and filtered the prepared dataset for the desired series:

# Plot the IRFs

p <- plot(boot.svar)

p$layers[[1]]$aes_params$fill <- "pink"
p$layers[[1]]$aes_params$alpha <- .5
p$layers[[2]]$aes_params$colour <- "green"
p

# Helper to convert to long dataframe. Source: svars:::plot.hd
hd2PlotData <- function(x) {
  PlotData <- as.data.frame(x$hidec)
  if (inherits(x$hidec, "ts")) {
    tsStructure = attr(x$hidec, which = "tsp")
    PlotData$Index <- seq(from = tsStructure[1], to = tsStructure[2], 
                          by = 1/tsStructure[3])
    PlotData$Index <- as.Date(yearmon(PlotData$Index))
  }
  else {
    PlotData$Index <- 1:nrow(PlotData)
    PlotData$V1 <- NULL
  }
  dat <- reshape2::melt(PlotData, id = "Index")
  dat
}

hist.decomp <- hd(svar.model, series = 1)

dat <- hd2PlotData(hist.decomp)

dat %>% 
  filter(grepl("^Cum", variable)) %>% 
  ggplot(aes(x = Index, y = value, color = variable)) + 
  geom_line() + 
  xlab("Time") + 
  theme_bw()

EDIT One approach to change the facet labels is via a custom labeller function. For a different approach which changes the facet labels via the data see here:

myvec <- LETTERS[1:9]

mylabel <- function(labels, multi_line = TRUE) {
  data.frame(variable = labels) 
}
p + facet_wrap(~variable, labeller = my_labeller(my_labels))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...