I came across this earlier today and thought I might share the solution that I eventually came up with. I'm not sure what the policy is here regarding replying to old posts. I'm just going by the fact that I came across this question this morning, and this kind of thing would have been useful to me.
For efficiency, I've avoided recursion. Also, it doesn't use any specific c++ stuff - it will work fine on C as well.
We're trying to create N nested "for" loops.
Instead of using
for(int i = 0; i<max; i++)
for (int j = 0; j<max; j++)
...
I'll be replacing i, j, ... with an array: i[0], i[1], ..., i[n-1].
Here's my solution:
const int n = /*Insert N here: how many loops do you need?*/;
int i[n+1]; // if "n" is not known before hand, then this array will need to be created dynamically.
//Note: there is an extra element at the end of the array, in order to keep track of whether to exit the array.
for (int a=0; a<n+1; a++) {
i[a]=0;
}
int MAX = 79; //That's just an example, if all of the loops are identical: e.g. "for(int i=0; i<79; i++)". If the value of MAX changes for each loop, then make MAX an array instead: (new) int MAX [n]; MAX[0]=10; MAX[1]=20;...;MAX[n-1]=whatever.
int p = 0; //Used to increment all of the indicies correctly, at the end of each loop.
while (i[n]==0) {//Remember, you're only using indicies i[0], ..., i[n-1]. The (n+1)th index, i[n], is just to check whether to the nested loop stuff has finished.
//DO STUFF HERE. Pretend you're inside your nested for loops. The more usual i,j,k,... have been replaced here with i[0], i[1], ..., i[n-1].
//Now, after you've done your stuff, we need to increment all of the indicies correctly.
i[0]++;
// p = 0;//Commented out, because it's replaced by a more efficient alternative below.
while(i[p]==MAX) {//(or "MAX[p]" if each "for" loop is different. Note that from an English point of view, this is more like "if(i[p]==MAX". (Initially i[0]) If this is true, then i[p] is reset to 0, and i[p+1] is incremented.
i[p]=0;
i[++p]++; //increase p by 1, and increase the next (p+1)th index
if(i[p]!=MAX)
p=0;//Alternatively, "p=0" can be inserted above (currently commented-out). This one's more efficient though, since it only resets p when it actually needs to be reset!
}
}
There, that's all. Hopefully the comments make it clear what it's meant to be doing. I think it should be pretty efficient - almost as much as real nested for-loops. Most of the overhead is a one-off at the beginning, so this should be more efficient that using recursive functions etc (please correct me if I'm wrong on this point).
Hope it's useful to somebody one day.
Peace and love.