It is because the grammar requires it. It does.
A requires
constraint does not have to use a requires
expression. It can use any more-or-less arbitrary boolean constant expression. Therefore, requires (foo)
must be a legitimate requires
constraint.
A requires
expression (that thing that tests whether certain things follow certain constraints) is a distinct construct; it's just introduced by the same keyword. requires (foo f)
would be the beginning of a valid requires
expression.
What you want is that if you use requires
in a place that accepts constraints, you should be able to make a "constraint+expression" out of the requires
clause.
So here's the question: if you put requires (foo)
into a place that is appropriate for a requires constraint... how far does the parser have to go before it can realize that this is a requires constraint rather than a constraint+expression the way you want it to be?
Consider this:
void bar() requires (foo)
{
//stuff
}
If foo
is a type, then (foo)
is a parameter list of a requires expression, and everything in the {}
is not the body of the function but the body of that requires
expression. Otherwise, foo
is an expression in a requires
clause.
Well, you could say that the compiler should just figure out what foo
is first. But C++ really doesn't like it when the basic act of parsing a sequence of tokens requires that the compiler figure out what those identifiers mean before it can make sense of the tokens. Yes, C++ is context-sensitive, so this does happen. But the committee prefers to avoid it where possible.
So yes, it's grammar.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…