Consider this code:
#include <iostream>
using namespace std;
class hello{
public:
void f(){
cout<<"f"<<endl;
}
virtual void ff(){
cout<<"ff"<<endl;
}
};
#define call_mem_fn(object, ptr) ((object).*(ptr))
template<R (C::*ptr_to_mem)(Args...)> void proxycall(C& obj){
cout<<"hello"<<endl;
call_mem_fn(obj, ptr_to_mem)();
}
int main(){
hello obj;
proxycall<&hello::f>(obj);
}
Of course this won't compile at line 16, because the compiler doesn't know what R
, C
and Args
, are. But there's another problem: if one tries to define those template parameters right before ptr_to_mem
, he runs into this bad situation:
template<typename R, typename C, typename... Args, R (C::*ptr_to_mem)(Args...)>
// ^variadic template, but not as last parameter!
void proxycall(C& obj){
cout<<"hello"<<endl;
call_mem_fn(obj, ptr_to_mem)();
}
int main(){
hello obj;
proxycall<void, hello, &hello::f>(obj);
}
Surprisingly, g++ does not complain about Args
not being the last parameter in the template list, but anyway it cannot bind proxycall
to the right template function, and just notes that it's a possible candidate.
Any solution? My last resort is to pass the member function pointer as an argument, but if I could pass it as a template parameter it would fit better with the rest of my code.
EDIT: as some have pointed out, the example seems pointless because proxycall isn't going to pass any argument. This is not true in the actual code I'm working on: the arguments are fetched with some template tricks from a Lua stack. But that part of the code is irrelevant to the question, and rather lengthy, so I won't paste it here.
See Question&Answers more detail:os