I have a simple function with an inner loop - it scales the input value, looks up an output value in a lookup table, and copies it to the destination. (ftol_ambient is a trick I copied from the web for fast conversion of float to int).
for (i = 0; i < iCount; ++i)
{
iScaled = ftol_ambient(*pSource * PRECISION3);
if (iScaled <= 0)
*pDestination = 0;
else if (iScaled >= PRECISION3)
*pDestination = 255;
else
{
iSRGB = FloatToSRGBTable3[iScaled];
*pDestination = iSRGB;
}
pSource++;
pDestination++;
}
Now my lookup table is finite, and floats are infinite, so there's a possibility of off-by-one errors. I created a copy of the function with some code to handle that case. Notice that the only difference is the added 2 lines of code - please ignore the ugly pointer casting.
for (i = 0; i < iCount; ++i)
{
iScaled = ftol_ambient(*pSource * PRECISION3);
if (iScaled <= 0)
*pDestination = 0;
else if (iScaled >= PRECISION3)
*pDestination = 255;
else
{
iSRGB = FloatToSRGBTable3[iScaled];
if (((int *)SRGBCeiling)[iSRGB] <= *((int *)pSource))
++iSRGB;
*pDestination = (unsigned char) iSRGB;
}
pSource++;
pDestination++;
}
Here's the strange part. I'm testing both versions with identical input of 100000 elements, repeated 100 times. On my Athlon 64 1.8 GHz (32 bit mode), the first function takes 0.231 seconds, and the second (longer) function takes 0.185 seconds. Both functions are adjacent in the same source file, so there's no possibility of different compiler settings. I've run the tests many times, reversing the order they're run in, and the timings are roughly the same every time.
I know there's a lot of mystery in modern processors, but how is this possible?
Here for comparison are the relevant assembler outputs from the Microsoft VC++6 compiler.
; 173 : for (i = 0; i < iCount; ++i)
$L4455:
; 174 : {
; 175 : iScaled = ftol_ambient(*pSource * PRECISION3);
fld DWORD PTR [esi]
fmul DWORD PTR __real@4@400b8000000000000000
fstp QWORD PTR $T5011[ebp]
; 170 : int i;
; 171 : int iScaled;
; 172 : unsigned int iSRGB;
fld QWORD PTR $T5011[ebp]
; 173 : for (i = 0; i < iCount; ++i)
fistp DWORD PTR _i$5009[ebp]
; 176 : if (iScaled <= 0)
mov edx, DWORD PTR _i$5009[ebp]
test edx, edx
jg SHORT $L4458
; 177 : *pDestination = 0;
mov BYTE PTR [ecx], 0
; 178 : else if (iScaled >= PRECISION3)
jmp SHORT $L4461
$L4458:
cmp edx, 4096 ; 00001000H
jl SHORT $L4460
; 179 : *pDestination = 255;
mov BYTE PTR [ecx], 255 ; 000000ffH
; 180 : else
jmp SHORT $L4461
$L4460:
; 181 : {
; 182 : iSRGB = FloatToSRGBTable3[iScaled];
; 183 : *pDestination = (unsigned char) iSRGB;
mov dl, BYTE PTR _FloatToSRGBTable3[edx]
mov BYTE PTR [ecx], dl
$L4461:
; 184 : }
; 185 : pSource++;
add esi, 4
; 186 : pDestination++;
inc ecx
dec edi
jne SHORT $L4455
$L4472:
; 199 : {
; 200 : iScaled = ftol_ambient(*pSource * PRECISION3);
fld DWORD PTR [esi]
fmul DWORD PTR __real@4@400b8000000000000000
fstp QWORD PTR $T4865[ebp]
; 195 : int i;
; 196 : int iScaled;
; 197 : unsigned int iSRGB;
fld QWORD PTR $T4865[ebp]
; 198 : for (i = 0; i < iCount; ++i)
fistp DWORD PTR _i$4863[ebp]
; 201 : if (iScaled <= 0)
mov edx, DWORD PTR _i$4863[ebp]
test edx, edx
jg SHORT $L4475
; 202 : *pDestination = 0;
mov BYTE PTR [edi], 0
; 203 : else if (iScaled >= PRECISION3)
jmp SHORT $L4478
$L4475:
cmp edx, 4096 ; 00001000H
jl SHORT $L4477
; 204 : *pDestination = 255;
mov BYTE PTR [edi], 255 ; 000000ffH
; 205 : else
jmp SHORT $L4478
$L4477:
; 206 : {
; 207 : iSRGB = FloatToSRGBTable3[iScaled];
xor ecx, ecx
mov cl, BYTE PTR _FloatToSRGBTable3[edx]
; 208 : if (((int *)SRGBCeiling)[iSRGB] <= *((int *)pSource))
mov edx, DWORD PTR _SRGBCeiling[ecx*4]
cmp edx, DWORD PTR [esi]
jg SHORT $L4481
; 209 : ++iSRGB;
inc ecx
$L4481:
; 210 : *pDestination = (unsigned char) iSRGB;
mov BYTE PTR [edi], cl
$L4478:
; 211 : }
; 212 : pSource++;
add esi, 4
; 213 : pDestination++;
inc edi
dec eax
jne SHORT $L4472
Edit: Trying to test Nils Pipenbrinck's hypothesis, I added a couple of lines before and inside of the loop of the first function:
int one = 1;
int two = 2;
if (one == two)
++iSRGB;
The run time of the first function is now down to 0.152 seconds. Interesting.
Edit 2: Nils pointed out that the comparison would be optimized out of a release build, and indeed it is. The changes in the assembly code are very subtle, I will post it here to see if it provides any clues. At this point I'm wondering if it's code alignment?
; 175 : for (i = 0; i < iCount; ++i)
$L4457:
; 176 : {
; 177 : iScaled = ftol_ambient(*pSource * PRECISION3);
fld DWORD PTR [edi]
fmul DWORD PTR __real@4@400b8000000000000000
fstp QWORD PTR $T5014[ebp]
; 170 : int i;
; 171 : int iScaled;
; 172 : int one = 1;
fld QWORD PTR $T5014[ebp]
; 173 : int two = 2;
fistp DWORD PTR _i$5012[ebp]
; 178 : if (iScaled <= 0)
mov esi, DWORD PTR _i$5012[ebp]
test esi, esi
jg SHORT $L4460
; 179 : *pDestination = 0;
mov BYTE PTR [edx], 0
; 180 : else if (iScaled >= PRECISION3)
jmp SHORT $L4463
$L4460:
cmp esi, 4096 ; 00001000H
jl SHORT $L4462
; 181 : *pDestination = 255;
mov BYTE PTR [edx], 255 ; 000000ffH
; 182 : else
jmp SHORT $L4463
$L4462:
; 183 : {
; 184 : iSRGB = FloatToSRGBTable3[iScaled];
xor ecx, ecx
mov cl, BYTE PTR _FloatToSRGBTable3[esi]
; 185 : if (one == two)
; 186 : ++iSRGB;
; 187 : *pDestination = (unsigned char) iSRGB;
mov BYTE PTR [edx], cl
$L4463:
; 188 : }
; 189 : pSource++;
add edi, 4
; 190 : pDestination++;
inc edx
dec eax
jne SHORT $L4457
See Question&Answers more detail:os