The way operator overloads for user defined classes was meant to work is via argument dependent lookup. ADL allows programs and libraries to avoid cluttering up the global namespace with operator overloads, but still allow convenient use of the operators; That is, without explicit namespace qualification, which is not possible to do with the infix operator syntax a + b
and would instead require normal function syntax your_namespace::operator+ (a, b)
.
ADL, however, doesn't just search everywhere for any possible operator overload. ADL is restricted to look only at 'associated' classes and namespaces. The problem with std::rel_ops
is that, as specified, this namespace can never be an associated namespace of any class defined outside the standard library, and therefore ADL cannot work with such user defined types.
However, if you're willing to cheat you can make std::rel_ops
work.
Associated namespaces are defined in C++11 3.4.2 [basic.lookup.argdep] /2. For our purposes the important fact is that the namespace of which a base class is a member is an associated namespace of the inheriting class, and thus ADL will check those namespaces for appropriate functions.
So, if the following:
#include <utility> // rel_ops
namespace std { namespace rel_ops { struct make_rel_ops_work {}; } }
were to (somehow) find its way into a translation unit, then on supported implementations (see next section) you could then define your own class types like so:
namespace N {
// inherit from make_rel_ops_work so that std::rel_ops is an associated namespace for ADL
struct S : private std::rel_ops::make_rel_ops_work {};
bool operator== (S const &lhs, S const &rhs) { return true; }
bool operator< (S const &lhs, S const &rhs) { return false; }
}
And then ADL would work for your class type and would find the operators in std::rel_ops
.
#include "S.h"
#include <functional> // greater
int main()
{
N::S a, b;
a >= b; // okay
std::greater<N::s>()(a, b); // okay
}
Of course adding make_rel_ops_work
yourself technically causes the program to have undefined behavior because C++ does not allow user programs to add declarations to std
. As an example of how that actually does matter and why, if you do this, you may want to go to the trouble of verifying that your implementation does in fact work properly with this addition, consider:
Above I show a declaration of make_rel_ops_work
that follows #include <utility>
. One might naively expect that including this here doesn't matter and that as long as the header is included sometime prior to the use of the operator overloads, then ADL will work. The spec of course makes no such guarantee and there are actual implementations where that is not the case.
clang with libc++, due to libc++'s use of inline namespaces, will (IIUC) consider that declaration of make_rel_ops_work
to be in a distinct namespace from the namespace containing the <utility>
operator overloads unless <utility>
's declaration of std::rel_ops
comes first. This is because, technically, std::__1::rel_ops
and std::rel_ops
are distinct namespaces even if std::__1
is an inline namespace. But if clang sees that the original namespace declaration for rel_ops
is in an inline namespace __1
, then it will treat a namespace std { namespace rel_ops {
declaration as extending std::__1::rel_ops
rather than as a new namespace.
I believe this namespace extension behavior is a clang extension rather than specified by C++, so you may not even be able to rely on this in other implementations. In particular gcc does not behave this way, but fortunately libstdc++ doesn't use inline namespaces. If you don't want to rely on this extension then for clang/libc++ you can write:
#include <__config>
_LIBCPP_BEGIN_NAMESPACE_STD
namespace rel_ops { struct make_rel_ops_work {}; }
_LIBCPP_END_NAMESPACE_STD
but obviously then you'll need implementations for other libraries you use. My simpler declaration of make_rel_ops_work
works for clang3.2/libc++, gcc4.7.3/libstdc++, and VS2012.