Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have a data frame that looks like this:

  Store Temperature Unemployment Sum_Sales
1     1       42.31        8.106   1643691
2     1       38.51        8.106   1641957
3     1       39.93        8.106   1611968
4     1       46.63        8.106   1409728
5     1       46.50        8.106   1554807
6     1       57.79        8.106   1439542

For each 'Store', I want to normalize/scale two columns ("Sum_sales" and "Temperature").

Desired output:

  Store Temperature Unemployment Sum_Sales
1     1       1.000        8.106   1.00000
2     1       0.000        8.106   0.94533
3     1       0.374        8.106   0.00000
4     2       0.012        8.106   0.00000
5     2       0.000        8.106   1.00000
6     2       1.000        8.106   0.20550

Here is the normalizing function that I created:

 normalit<-function(m){
   (m - min(m))/(max(m)-min(m))
 }

What I have tried:

df2 <- df %.%
  group_by('Store') %.%
  summarise(Temperature = normalit(Temperature), Sum_Sales = normalit(Sum_Sales)))

Any suggestions/help would be greatly appreciated. Thanks.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
482 views
Welcome To Ask or Share your Answers For Others

1 Answer

The issue is that you are using the wrong dplyr verb. Summarize will create one result per group per variable. What you want is mutate. Mutate changes variables and returns a result of the same length as the original. See http://cran.rstudio.com/web/packages/dplyr/vignettes/dplyr.html. Below two approaches using dplyr:

df %>%
    group_by(Store) %>%
    mutate(Temperature = normalit(Temperature), Sum_Sales = normalit(Sum_Sales))

df %>%
    group_by(Store) %>%
    mutate_each(funs(normalit), Temperature, Sum_Sales)

Note: The Store variable is different between your data and desired result. I assumed that @jlhoward got the right data.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...