Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I am working with a text file where data look like below

*******************************
Sensor 1028 at site 101
SID = 16384
Tag = AI.1028.BT.VOLT
04/07/16 05:00:00  12.65
04/07/16 06:00:00  12.64
04/07/16 07:00:00  12.68
04/07/16 08:00:00  13.08
04/07/16 09:00:00  13.76
*******************************
Sensor 1171 at well 102
SID = 20062
Tag = AI.1171.WT.LEV
04/07/16 05:00:00  0.95
04/07/16 06:00:00  0.90
04/07/16 07:00:00  0.82
04/07/16 08:00:00  0.71
04/07/16 09:00:00  0.59
04/07/16 10:00:00  0.48

I want to be able to extract the data for each tag and create a data frame as below-

Tag  Timestamp          Value
1028 04/07/16 05:00:00  12.65
1028 04/07/16 06:00:00  12.64
1028 04/07/16 07:00:00  12.68
1028 04/07/16 08:00:00  13.08
1028 04/07/16 09:00:00  13.76
1171 04/07/16 05:00:00  0.95
1171 04/07/16 06:00:00  0.90
1171 04/07/16 07:00:00  0.82
1171 04/07/16 08:00:00  0.71
1171 04/07/16 09:00:00  0.59
1171 04/07/16 10:00:00  0.48

Tag is the numeric part in the patter such as 1028 in "Tag = AI.1028.BT.VOLT" and 1171 in "Tag = AI.1171.WT.LEV".

I have looked at other questions on similar lines but I am relatively new to R and other than importing the text file using readLines and extracting the pattern using grep, I couldn't do anything.

Any help would be greatly appreciated. Thanks!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
261 views
Welcome To Ask or Share your Answers For Others

1 Answer

Using the data.table package, I would approach it as follows:

sensortext <- readLines('sensors.txt')

library(data.table)
DT <- data.table(txt = sensortext[!grepl(pattern = '\*+', sensortext)])

DT <- DT[, grp := cumsum(grepl('Sensor', txt))
         ][, `:=` (tag = as.numeric(gsub('^.*(\d+{4}).*','\1', grep('Tag =', txt, value = TRUE))),
                   sid = as.numeric(gsub('^.*(\d+{5}).*','\1', grep('SID = ', txt, value = TRUE))),
                   type = strsplit(grep('Sensor ', txt, value = TRUE),' ')[[1]][4],
                   type.nr = as.numeric(gsub('^.*(\d+{3}).*','\1', grep('Sensor ', txt, value = TRUE)))), 
           by = grp
           ][, .SD[4:.N], by = grp
             ][, c('datetime','value') := tstrsplit(txt, '\s+{2}', type.convert = TRUE)
               ][, c('grp','txt') := NULL
                 ][, datetime := as.POSIXct(strptime(datetime, "%d/%m/%y %H:%M:%S"))]

which gives:

> DT
     tag   sid type type.nr            datetime value
 1: 1028 16384 site     101 2016-07-04 05:00:00 12.65
 2: 1028 16384 site     101 2016-07-04 06:00:00 12.64
 3: 1028 16384 site     101 2016-07-04 07:00:00 12.68
 4: 1028 16384 site     101 2016-07-04 08:00:00 13.08
 5: 1028 16384 site     101 2016-07-04 09:00:00 13.76
 6: 1171 20062 well     102 2016-07-04 05:00:00  0.95
 7: 1171 20062 well     102 2016-07-04 06:00:00  0.90
 8: 1171 20062 well     102 2016-07-04 07:00:00  0.82
 9: 1171 20062 well     102 2016-07-04 08:00:00  0.71
10: 1171 20062 well     102 2016-07-04 09:00:00  0.59
11: 1171 20062 well     102 2016-07-04 10:00:00  0.48

Explanation:

  • With the readLines function you read the textfile. After that, you convert it to a 1 column datatable data.table(txt = sensortext[!grepl(pattern = '\*+', sensortext)]).
  • With [, grp := cumsum(grepl('Sensor', txt))] you create a grouping variable that separates the different dataparts. grepl('Sensor', txt) creates a logical value detecting the lines that start with Sensor (and indicate the start of a new datapart). Using cumsum on that creates an grouping variable.
  • With tag = as.numeric(gsub('^.*(\d+{4}).*','\1', grep('Tag =', txt, value = TRUE))) you extract the tag-number (as well as for sid, type & type.nr).
  • With [, .SD[4:.N], by = grp] you remove the first three lines per group (because they do not contain data and the needed info is already extracted in the previous steps).
  • With [, c('datetime','value') := tstrsplit(txt, '\s+{2}', type.convert = TRUE)] you convert the data which is still in text format in the txt column into three data columns. The type.convert = TRUE makes sure that the value column gets the right format (numeric in this case).
  • Remove the grp and txt columns with [, c('grp','txt') := NULL] (because they are not needed anymore).
  • And finally convert the datetime column to POSIXct format with as.POSIXct(strptime(datetime, "%d/%m/%y %H:%M:%S")).

To see what each step does, you can also use the following code:

DT[, grp := cumsum(grepl('Sensor', txt))]
DT[, `:=` (tag = as.numeric(gsub('^.*(\d+{4}).*','\1', grep('Tag =', txt, value = TRUE))),
           sid = as.numeric(gsub('^.*(\d+{5}).*','\1', grep('SID = ', txt, value = TRUE))),
           type = strsplit(grep('Sensor ', txt, value = TRUE),' ')[[1]][4],
           type.nr = as.numeric(gsub('^.*(\d+{3}).*','\1', grep('Sensor ', txt, value = TRUE)))),
   by = grp][]
DT <- DT[, .SD[4:.N], by = grp][]
DT[, c('datetime','value') := tstrsplit(txt, '\s+{2}', type.convert = TRUE)][]
DT[, c('grp','txt') := NULL][]
DT[, datetime := as.POSIXct(strptime(datetime, "%d/%m/%y %H:%M:%S"))][]

Adding [] to each line, makes sure that the result gets printed to the console.


An alternative with base R:

sensortext <- readLines('sensors.txt')

rawlist <- split(sensortext, cumsum(grepl(pattern = '\*+', sensortext)))
l <- lapply(rawlist, function(x) read.fwf(textConnection(x[-c(1:4)]), widths = c(17,7), header = FALSE))
reps <- sapply(l, nrow)

df <- do.call(rbind, l)
df$V1 <- strptime(df$V1, '%d/%m/%y %H:%M:%S')
names(df) <- c('datetime','value')

df$tag <- rep(as.numeric(gsub('^.*(\d+{4}).*','\1', grep('Tag =', sensortext, value = TRUE))), reps)
df$sid  <- rep(as.numeric(gsub('^.*(\d+{5}).*','\1', grep('SID = ', sensortext, value = TRUE))), reps)
df$type  <- rep(sapply(strsplit(grep('Sensor ', sensortext, value = TRUE),' '), '[', 4), reps)
df$type.nr <- rep(as.numeric(gsub('^.*(\d+{3}).*','\1', grep('Sensor ', sensortext, value = TRUE))), reps)

which gives the same result:

> df
               datetime value  tag   sid type type.nr
1.1 2016-07-04 05:00:00 12.65 1028 16384 site     101
1.2 2016-07-04 06:00:00 12.64 1028 16384 site     101
1.3 2016-07-04 07:00:00 12.68 1028 16384 site     101
1.4 2016-07-04 08:00:00 13.08 1028 16384 site     101
1.5 2016-07-04 09:00:00 13.76 1028 16384 site     101
2.1 2016-07-04 05:00:00  0.95 1171 20062 well     102
2.2 2016-07-04 06:00:00  0.90 1171 20062 well     102
2.3 2016-07-04 07:00:00  0.82 1171 20062 well     102
2.4 2016-07-04 08:00:00  0.71 1171 20062 well     102
2.5 2016-07-04 09:00:00  0.59 1171 20062 well     102
2.6 2016-07-04 10:00:00  0.48 1171 20062 well     102

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...