Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

The scenario goes like this: I have a picture of a paper that I would like to do some OCR. So take the image below as my input example:

orig_image

After successfully detecting the area that corresponds to the paper I'm left with a vector<Point> of 4 coordinates that define its location inside the image. Note that these coordinates will probably not correspond to a perfect rectangle due to the distance of the camera and angle when the picture was taken. For viewing purposes I connected the points in the sub-image so you can see what I mean:

detected_image

In this case, the points are: [1215, 43] , [52, 67] , [56, 869] and [1216, 884]

At this moment, I need to adjust these points so they become aligned horizontally. What do I mean by that? If you notice the area of the sub-image above, it is a little rotated: the points on right side of the image are positioned a little higher than points on the other side.

In other words, we have image A, which was exaggerated on purpose to look a little more distorted/rotated than reality, and then image B - which is what I would like as the final result of this procedure:

A) bad_rect B) ok_rect

I'm not sure which techniques could be used to achieve this transformation. The application also needs to detect automatically how much rotation needs to be done, as I don't have control over the image acquisition procedure.

The purpose is to have a new Mat with the normalized sub-image. I'm not worried about a possible image distortion right now, I'm just looking for a way to identify how much rotation needs to be done on the sub-image and how to apply it and get a more rectangular area.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
287 views
Welcome To Ask or Share your Answers For Others

1 Answer

I think http://felix.abecassis.me/2011/10/opencv-rotation-deskewing/ and http://felix.abecassis.me/2011/10/opencv-bounding-box-skew-angle/ will come in handy. The aforementioned posts don't cover perspective warping (only rotation). To get the best results, you'll have to use warpPerspective (maybe in conjunction with getRotationMatrix2D). Use the angles between line segments to find out how much you need to warp the perspective. THe assumption here is that they should always be 90 degrees and that the closest one to 90 degrees is the "closest" vector as far as the perspective is concerned.

Don't forget to normalize your vectors!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share

548k questions

547k answers

4 comments

86.3k users

...