Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

how do I plot my scatterplot on a map? I managed to plot my scatterplot, however I wanted it to be plotted on a map. I believe that an option is to use the leaflet package, since I have the Latitude and Longitude coordinates, but I don't know how to use it. Please, if you have other options feel free. Could you help me with this problem ?? The executable code is below.

Thank you very much!

library(shiny)
library(ggplot2)
library(rdist)
library(geosphere)
library(kableExtra)
library(readxl)
library(tidyverse)
library(DT)

#database
df<-structure(list(Properties = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9,  -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, 
                                                                                                                                                 + -23.9, -23.9, -23.9, -23.9, -23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7, 
                                                                                                                                                                                                                                                                                                     + -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + 175, 175, 350, 45.5, 54.6,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350)), class = "data.frame", row.names = c(NA, -35L))

function.clustering<-function(df,k,Filter1,Filter2){

  if (Filter1==2){
    Q1<-matrix(quantile(df$Waste, probs = 0.25)) 
    Q3<-matrix(quantile(df$Waste, probs = 0.75))
    L<-Q1-1.5*(Q3-Q1)
    S<-Q3+1.5*(Q3-Q1)
    df_1<-subset(df,Waste>L[1]) 
    df<-subset(df_1,Waste<S[1])
  }

  #cluster
  coordinates<-df[c("Latitude","Longitude")]
  d<-as.dist(distm(coordinates[,2:1]))
  fit.average<-hclust(d,method="average") 


  #Number of clusters
  clusters<-cutree(fit.average, k) 
  nclusters<-matrix(table(clusters))  
  df$cluster <- clusters 

  #Localization
  center_mass<-matrix(nrow=k,ncol=2)
  for(i in 1:k){
    center_mass[i,]<-c(weighted.mean(subset(df,cluster==i)$Latitude,subset(df,cluster==i)$Waste),
                       weighted.mean(subset(df,cluster==i)$Longitude,subset(df,cluster==i)$Waste))}
  coordinates$cluster<-clusters 
  center_mass<-cbind(center_mass,matrix(c(1:k),ncol=1)) 

  #Coverage
  coverage<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    aux_dist<-distm(rbind(subset(coordinates,cluster==i),center_mass[i,])[,2:1])
    coverage[i,]<-max(aux_dist[nclusters[i,1]+1,])}
  coverage<-cbind(coverage,matrix(c(1:k),ncol=1))
  colnames(coverage)<-c("Coverage_meters","cluster")

  #Sum of Waste from clusters
  sum_waste<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    sum_waste[i,]<-sum(subset(df,cluster==i)["Waste"])
  }
  sum_waste<-cbind(sum_waste,matrix(c(1:k),ncol=1))
  colnames(sum_waste)<-c("Potential_Waste_m3","cluster")

  #Output table
  data_table <- Reduce(merge, list(df, coverage, sum_waste))
  data_table <- data_table[order(data_table$cluster, as.numeric(data_table$Properties)),]
  data_table_1 <- aggregate(. ~ cluster + Coverage_meters + Potential_Waste_m3, data_table[,c(1,7,6,2)], toString)

  #Scatter Plot
  suppressPackageStartupMessages(library(ggplot2))
  df1<-as.data.frame(center_mass)
  colnames(df1) <-c("Latitude", "Longitude", "cluster")
  g<-ggplot(data=df,  aes(x=Longitude, y=Latitude,  color=factor(clusters))) + geom_point(aes(x=Longitude, y=Latitude), size = 4)
  Centro_View<- g +  geom_text(data=df, mapping=aes(x=eval(Longitude), y=eval(Latitude), label=Waste), size=3, hjust=-0.1)+ geom_point(data=df1, mapping=aes(Longitude, Latitude), color= "green", size=4) + geom_text(data=df1, mapping = aes(x=Longitude, y=Latitude, label = 1:k), color = "black", size = 4)
  plotGD<-print(Centro_View + ggtitle("Scatter Plot") + theme(plot.title = element_text(hjust = 0.5)))

  return(list(
    "Data" = data_table_1,
    "Plot" = plotGD
  ))
}

ui <- bootstrapPage(
  navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
             "Clustering", 

             tabPanel("General Solution",

                      sidebarLayout(
                        sidebarPanel(
                          radioButtons("filtro1", h3("Select properties"),
                                       choices = list("All properties" = 1, 
                                                      "Exclude properties" = 2),
                                       selected = 1),

                          tags$b(h5("(a) Choose other filters")),
                          tags$b(h5("(b) Choose clusters")),  
                          sliderInput("Slider", h5(""),
                                      min = 2, max = 8, value = 5)
                      ),

                        mainPanel(
                          tabsetPanel(      
                            tabPanel("Solution", plotOutput("ScatterPlot"))))

                      ))))


server <- function(input, output, session) {

  Modelclustering<-reactive(function.clustering(df,input$Slider,1,1))

  output$ScatterPlot <- renderPlot({
    Modelclustering()[[2]]
  })

  observeEvent(input$Slider,{
    updateSelectInput(session,'select',
                      choices=unique(df[df==input$Slider]))
  }) 


}

shinyApp(ui = ui, server = server)

Thank you very much!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
329 views
Welcome To Ask or Share your Answers For Others

1 Answer

I can think of a couple things that may help you.

library(shiny)
library(ggplot2)

useri <- shinyUI(pageWithSidebar(
headerPanel("Reactive Plot"),
sidebarPanel(
selectInput('x','X-Axis',names(iris)),
selectInput('y','Y-Axis',names(iris)),
selectInput('color','Color',c('None',names(iris[5])))),
mainPanel(uiOutput("plotui"),dataTableOutput("plot_brushed_points"))))

serveri <- shinyServer(function(input,output) {
output$plot <- renderPlot({
p <- ggplot(iris,aes_string(x=input$x, y=input$y))+geom_point()+theme_bw()
if(input$color != 'None')
  p <- p + aes_string(color=input$color)
print(p)
})
output$plotui <- renderUI(plotOutput("plot",brush = brushOpts("plot_brush")))
output$plot_brushed_points <- renderDataTable(brushedPoints(iris,input$plot_brush,input$x,input$y), options=list(searching=FALSE, paging = FALSE))
})

shinyApp(useri, serveri)

enter image description here

Also...

library(shiny)
library(shinydashboard)
library(shinyjs)
library(glue)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(selectInput("cols", NULL, c(2, 3, 4, 6, 12), 4)),
  dashboardBody(
    useShinyjs(),
    div(
      box(solidHeader = TRUE,
          title = "Box",
          width = 4,
          status = "info",
          sliderInput("sld", "n:", 1, 100, 50),
          plotOutput("plt")
      ), id = "box-parent")
  )) 

server <- function(input, output) {
  observe({
    cols <- req(input$cols)
    runjs(code = glue('var $el = $("#box-parent > :first");',
                      '$el.removeClass(function (index, className) {{',
                      'return (className.match(/(^|\s)col-sm-\d+/g) || []).join(" ")',
                      '}});',
                      '$el.addClass("col-sm-{cols}");'))
  })

  output$plt <- renderPlot(plot(rnorm(input$sld), rnorm(input$sld)))
}

shinyApp(ui, server)

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...