Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Previous Posts

Cleaning up a map using geom_tile

Get boundaries to come through on states

Problem/Question

I'm trying to smooth out some data to map with ggplot2. Thanks to @MrFlick and @hrbrmstr, I've made a lot of progress, but am having problems getting a "gradient" effect over the states I need listed.

Here is an example to give you an idea about what I'm looking for :

**** This is exactly what I'm trying to achieve.

http://nrelscience.org/2013/05/30/this-is-how-i-did-it-mapping-in-r-with-ggplot2/

(1) How can I make the most of ggplot2 with my data?

(2) Is there a better method for achieving a gradient effect?

Goals

Goals I would like to achieve from this bounty is :

(1) Interpolate the data to build a raster object and then plot with ggplot2

(or, if more can be done with the current plot and the raster object is not a good strategy)

(2) Build a better map with ggplot2

Current Results

I've been playing around with a lot of these different plots, but am still not happy with the results for two reasons: (1) The gradient isn't telling as much as I'd like; and (2) The presentation could be improved, although I'm not sure how to do it.

As @hrbrmstr has pointed out, it might provide better results if I did some interpolating with the data to produce more data, and then fit those into a raster object and plot with ggplot2. I think this is what I should be after at this point, but I'm not sure how to do this given the data I have.

I've listed below the code I have done so far with the results. I really appreciate any help in this matter. Thank you.

Data sets

Here are two data sets :

(1) Full data set (175 mb) : PRISM_1895_db_all.csv (NOT AVAILABLE)

https://www.dropbox.com/s/uglvwufcr6e9oo6/PRISM_1895_db_all.csv?dl=0

(2) Partial data set (14 mb) : PRISM_1895_db.csv (NOT AVAILABLE)

https://www.dropbox.com/s/0evuvrlm49ab9up/PRISM_1895_db.csv?dl=0

*** EDIT : To those interested, the data sets are not available, but I've made a post on my website that connects this code with a subset of California data at http://johnwoodill.com/pages/r-code.html

Plot 1

PRISM_1895_db <- read.csv("/.../PRISM_1895_db.csv")

regions<- c("north dakota","south dakota","nebraska","kansas","oklahoma","texas","minnesota","iowa","missouri","arkansas", "illinois", "indiana", "wisconsin")

ggplot() + 
  geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group)) +
  geom_point(data = PRISM_1895_db, aes(x = longitude, y = latitude, color = APPT), alpha = .5, size = 5) +
  geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group), color="white", fill=NA) +
  coord_equal()

enter image description here

Plot 2

PRISM_1895_db <- read.csv("/.../PRISM_1895_db.csv")

regions<- c("north dakota","south dakota","nebraska","kansas","oklahoma","texas","minnesota","iowa","missouri","arkansas", "illinois", "indiana", "wisconsin")

ggplot() + 
    geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group)) +
    geom_point(data = PRISM_1895_db, aes(x = longitude, y = latitude, color = APPT), alpha = .5, size = 5, shape = 15) +
    geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group), color="white", fill=NA) +
    coord_equal()

enter image description here

Plot 3

   PRISM_1895_db <- read.csv("/.../PRISM_1895_db.csv")

    regions<- c("north dakota","south dakota","nebraska","kansas","oklahoma","texas","minnesota","iowa","missouri","arkansas", "illinois", "indiana", "wisconsin")

ggplot() + 
  geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group)) +
  stat_summary2d(data=PRISM_1895_db, aes(x = longitude, y = latitude, z = APPT)) +
  geom_polygon(data=subset(map_data("state"), region %in% regions), aes(x=long, y=lat, group=group), color="white", fill=NA)

enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
407 views
Welcome To Ask or Share your Answers For Others

1 Answer

The CRAN spatial view got me started on "Kriging". The code below takes ~7 minutes to run on my laptop. You could try simpler interpolations (e.g., some sort of spline). You might also remove some of the locations from the high-density regions. You don't need all of those spots to get the same heatmap. As far as I know, there is no easy way to create a true gradient with ggplot2 (gridSVG has a few options but nothing like the "grid gradient" you would find in a fancy SVG editor).

enter image description here

As requested, here is interpolation using splines (much faster). Alot of the code is taken from Plotting contours on an irregular grid.

enter image description here

Code for kriging:

library(data.table)
library(ggplot2)
library(automap)

# Data munging
states=c("AR","IL","MO")
regions=c("arkansas","illinois","missouri")
PRISM_1895_db = as.data.frame(fread("./Downloads/PRISM_1895_db.csv"))
sub_data = PRISM_1895_db[PRISM_1895_db$state %in% states,c("latitude","longitude","APPT")]
coord_vars = c("latitude","longitude")
data_vars = setdiff(colnames(sub_data), coord_vars)
sp_points = SpatialPoints(sub_data[,coord_vars])
sp_df = SpatialPointsDataFrame(sp_points, sub_data[,data_vars,drop=FALSE])

# Create a fine grid
pixels_per_side = 200
bottom.left = apply(sp_points@coords,2,min)
top.right = apply(sp_points@coords,2,max)
margin = abs((top.right-bottom.left))/10
bottom.left = bottom.left-margin
top.right = top.right+margin
pixel.size = abs(top.right-bottom.left)/pixels_per_side
g = GridTopology(cellcentre.offset=bottom.left,
             cellsize=pixel.size,
             cells.dim=c(pixels_per_side,pixels_per_side))

# Clip the grid to the state regions
map_base_data = subset(map_data("state"), region %in% regions)
colnames(map_base_data)[match(c("long","lat"),colnames(map_base_data))] = c("longitude","latitude")
foo = function(x) {
  state = unique(x$region)
  print(state)
  Polygons(list(Polygon(x[,c("latitude","longitude")])),ID=state)
}
state_pg = SpatialPolygons(dlply(map_base_data, .(region), foo))
grid_points = SpatialPoints(g)
in_points = !is.na(over(grid_points,state_pg))
fit_points = SpatialPoints(as.data.frame(grid_points)[in_points,])

# Do kriging
krig = autoKrige(APPT~1, sp_df, new_data=fit_points)
interp_data = as.data.frame(krig$krige_output)
colnames(interp_data) = c("latitude","longitude","APPT_pred","APPT_var","APPT_stdev")

# Set up map plot
map_base_aesthetics = aes(x=longitude, y=latitude, group=group)
map_base = geom_polygon(data=map_base_data, map_base_aesthetics)
borders = geom_polygon(data=map_base_data, map_base_aesthetics, color="black", fill=NA)

nbin=20
ggplot(data=interp_data, aes(x=longitude, y=latitude)) + 
  geom_tile(aes(fill=APPT_pred),color=NA) +
  stat_contour(aes(z=APPT_pred), bins=nbin, color="#999999") +
  scale_fill_gradient2(low="blue",mid="white",high="red", midpoint=mean(interp_data$APPT_pred)) +
  borders +
  coord_equal() +
  geom_point(data=sub_data,color="black",size=0.3)

Code for spline interpolation:

library(data.table)
library(ggplot2)
library(automap)
library(plyr)
library(akima)

# Data munging
sub_data = as.data.frame(fread("./Downloads/PRISM_1895_db_all.csv"))
coord_vars = c("latitude","longitude")
data_vars = setdiff(colnames(sub_data), coord_vars)
sp_points = SpatialPoints(sub_data[,coord_vars])
sp_df = SpatialPointsDataFrame(sp_points, sub_data[,data_vars,drop=FALSE])

# Clip the grid to the state regions
regions<- c("north dakota","south dakota","nebraska","kansas","oklahoma","texas",
            "minnesota","iowa","missouri","arkansas", "illinois", "indiana", "wisconsin")
map_base_data = subset(map_data("state"), region %in% regions)
colnames(map_base_data)[match(c("long","lat"),colnames(map_base_data))] = c("longitude","latitude")
foo = function(x) {
  state = unique(x$region)
  print(state)
  Polygons(list(Polygon(x[,c("latitude","longitude")])),ID=state)
}
state_pg = SpatialPolygons(dlply(map_base_data, .(region), foo))

# Set up map plot
map_base_aesthetics = aes(x=longitude, y=latitude, group=group)
map_base = geom_polygon(data=map_base_data, map_base_aesthetics)
borders = geom_polygon(data=map_base_data, map_base_aesthetics, color="black", fill=NA)

# Do spline interpolation with the akima package
fld = with(sub_data, interp(x = longitude, y = latitude, z = APPT, duplicate="median",
                            xo=seq(min(map_base_data$longitude), max(map_base_data$longitude), length = 100),
                            yo=seq(min(map_base_data$latitude), max(map_base_data$latitude), length = 100),
                            extrap=TRUE, linear=FALSE))
melt_x = rep(fld$x, times=length(fld$y))
melt_y = rep(fld$y, each=length(fld$x))
melt_z = as.vector(fld$z)
level_data = data.frame(longitude=melt_x, latitude=melt_y, APPT=melt_z)
interp_data = na.omit(level_data)
grid_points = SpatialPoints(interp_data[,2:1])
in_points = !is.na(over(grid_points,state_pg))
inside_points = interp_data[in_points, ]

ggplot(data=inside_points, aes(x=longitude, y=latitude)) + 
  geom_tile(aes(fill=APPT)) + 
  stat_contour(aes(z=APPT)) +
  coord_equal() + 
  scale_fill_gradient2(low="blue",mid="white",high="red", midpoint=mean(inside_points$APPT)) +
  borders

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...