Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have a dataframe with columns x1, x2, group and I would like to generate a new dataframe with an extra column rank that indicates the order of x1 in its group.

There is a related question here, but the accepted answer does not seem to work anymore.

Until here, it's fine:

library(dplyr)
data(iris)
by_species <- iris %>% 
              arrange(Species, Sepal.Length) %>% 
              group_by(Species)  

But when I try to get the ranks by group:

by_species <- mutate(by_species, rank=row_number())

The error is:

Error in rank(x, ties.method = "first", na.last = "keep") :
argument "x" is missing, with no default

Update

The problem was some conflict between dplyr and plyr. To reproduce the error, load both packages:

library(dplyr)
library(plyr)
data(iris)
by_species <- iris %>% 
              arrange(Species, Sepal.Length) %>% 
              group_by(Species) %>% 
              mutate(rank=row_number())
# Error in rank(x, ties.method = "first", na.last = "keep") : 
# argument "x" is missing, with no default

Unloading plyr it works as it should:

detach("package:plyr", unload=TRUE)
by_species <- iris %>% 
              arrange(Species, Sepal.Length) %>% 
              group_by(Species) %>% 
              mutate(rank=row_number())

by_species %>% filter(rank <= 3)

##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species  rank
##          (dbl)       (dbl)        (dbl)       (dbl)     (fctr) (int)
## 1          4.3         3.0          1.1         0.1     setosa     1
## 2          4.4         2.9          1.4         0.2     setosa     2
## 3          4.4         3.0          1.3         0.2     setosa     3
## 4          4.9         2.4          3.3         1.0 versicolor     1
## 5          5.0         2.0          3.5         1.0 versicolor     2
## 6          5.0         2.3          3.3         1.0 versicolor     3
## 7          4.9         2.5          4.5         1.7  virginica     1
## 8          5.6         2.8          4.9         2.0  virginica     2
## 9          5.7         2.5          5.0         2.0  virginica     3
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
515 views
Welcome To Ask or Share your Answers For Others

1 Answer

The following produces the desired result as was specified.

library(dplyr)

by_species <- iris %>% arrange(Species, Sepal.Length) %>%
    group_by(Species) %>% 
    mutate(rank = rank(Sepal.Length, ties.method = "first"))

by_species %>% filter(rank <= 3)
##Source: local data frame [9 x 6]
##Groups: Species [3]
##
##  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species  rank
##         (dbl)       (dbl)        (dbl)       (dbl)     (fctr) (int)
##1          4.3         3.0          1.1         0.1     setosa     1
##2          4.4         2.9          1.4         0.2     setosa     2
##3          4.4         3.0          1.3         0.2     setosa     3
##4          4.9         2.4          3.3         1.0 versicolor     1
##5          5.0         2.0          3.5         1.0 versicolor     2
##6          5.0         2.3          3.3         1.0 versicolor     3
##7          4.9         2.5          4.5         1.7  virginica     1
##8          5.6         2.8          4.9         2.0  virginica     2
##9          5.7         2.5          5.0         2.0  virginica     3

by_species %>% slice(1:3)
##Source: local data frame [9 x 6]
##Groups: Species [3]
##
##  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species  rank
##         (dbl)       (dbl)        (dbl)       (dbl)     (fctr) (int)
##1          4.3         3.0          1.1         0.1     setosa     1
##2          4.4         2.9          1.4         0.2     setosa     2
##3          4.4         3.0          1.3         0.2     setosa     3
##4          4.9         2.4          3.3         1.0 versicolor     1
##5          5.0         2.0          3.5         1.0 versicolor     2
##6          5.0         2.3          3.3         1.0 versicolor     3
##7          4.9         2.5          4.5         1.7  virginica     1
##8          5.6         2.8          4.9         2.0  virginica     2
##9          5.7         2.5          5.0         2.0  virginica     3

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...