In short, Boost.Python does not support move-semantics, and therefore does not support std::unique_ptr
. Boost.Python's news/change log has no indication that it has been updated for C++11 move-semantics. Additionally, this feature request for unique_ptr
support has not been touched for over a year.
Nevertheless, Boost.Python supports transferring exclusive ownership of an object to and from Python via std::auto_ptr
. As unique_ptr
is essentially a safer version of auto_ptr
, it should be fairly straight forward to adapt an API using unique_ptr
to an API that uses auto_ptr
:
- When C++ transfers ownership to Python, the C++ function must:
- When Python transfers ownership to C++, the C++ function must:
- accept the instance via
auto_ptr
. The FAQ mentions that pointers returned from C++ with a manage_new_object
policy will be managed via std::auto_ptr
.
- have
auto_ptr
release control to a unique_ptr
via release()
Given an API/library that cannot be changed:
/// @brief Mockup Spam class.
struct Spam;
/// @brief Mockup factory for Spam.
struct SpamFactory
{
/// @brief Create Spam instances.
std::unique_ptr<Spam> make(const std::string&);
/// @brief Delete Spam instances.
void consume(std::unique_ptr<Spam>);
};
The SpamFactory::make()
and SpamFactory::consume()
need to be wrapped via auxiliary functions.
Functions transferring ownership from C++ to Python can be generically wrapped by a function that will create Python function objects:
/// @brief Adapter a member function that returns a unique_ptr to
/// a python function object that returns a raw pointer but
/// explicitly passes ownership to Python.
template <typename T,
typename C,
typename ...Args>
boost::python::object adapt_unique(std::unique_ptr<T> (C::*fn)(Args...))
{
return boost::python::make_function(
[fn](C& self, Args... args) { return (self.*fn)(args...).release(); },
boost::python::return_value_policy<boost::python::manage_new_object>(),
boost::mpl::vector<T*, C&, Args...>()
);
}
The lambda delegates to the original function, and releases()
ownership of the instance to Python, and the call policy indicates that Python will take ownership of the value returned from the lambda. The mpl::vector
describes the call signature to Boost.Python, allowing it to properly manage function dispatching between the languages.
The result of adapt_unique
is exposed as SpamFactory.make()
:
boost::python::class_<SpamFactory>(...)
.def("make", adapt_unique(&SpamFactory::make))
// ...
;
Generically adapting SpamFactory::consume()
is a more difficult, but it is easy enough to write a simple auxiliary function:
/// @brief Wrapper function for SpamFactory::consume_spam(). This
/// is required because Boost.Python will pass a handle to the
/// Spam instance as an auto_ptr that needs to be converted to
/// convert to a unique_ptr.
void SpamFactory_consume(
SpamFactory& self,
std::auto_ptr<Spam> ptr) // Note auto_ptr provided by Boost.Python.
{
return self.consume(std::unique_ptr<Spam>{ptr.release()});
}
The auxiliary function delegates to the original function, and converts the auto_ptr
provided by Boost.Python to the unique_ptr
required by the API. The SpamFactory_consume
auxiliary function is exposed as SpamFactory.consume()
:
boost::python::class_<SpamFactory>(...)
// ...
.def("consume", &SpamFactory_consume)
;
Here is a complete code example:
#include <iostream>
#include <memory>
#include <boost/python.hpp>
/// @brief Mockup Spam class.
struct Spam
{
Spam(std::size_t x) : x(x) { std::cout << "Spam()" << std::endl; }
~Spam() { std::cout << "~Spam()" << std::endl; }
Spam(const Spam&) = delete;
Spam& operator=(const Spam&) = delete;
std::size_t x;
};
/// @brief Mockup factor for Spam.
struct SpamFactory
{
/// @brief Create Spam instances.
std::unique_ptr<Spam> make(const std::string& str)
{
return std::unique_ptr<Spam>{new Spam{str.size()}};
}
/// @brief Delete Spam instances.
void consume(std::unique_ptr<Spam>) {}
};
/// @brief Adapter a non-member function that returns a unique_ptr to
/// a python function object that returns a raw pointer but
/// explicitly passes ownership to Python.
template <typename T,
typename ...Args>
boost::python::object adapt_unique(std::unique_ptr<T> (*fn)(Args...))
{
return boost::python::make_function(
[fn](Args... args) { return fn(args...).release(); },
boost::python::return_value_policy<boost::python::manage_new_object>(),
boost::mpl::vector<T*, Args...>()
);
}
/// @brief Adapter a member function that returns a unique_ptr to
/// a python function object that returns a raw pointer but
/// explicitly passes ownership to Python.
template <typename T,
typename C,
typename ...Args>
boost::python::object adapt_unique(std::unique_ptr<T> (C::*fn)(Args...))
{
return boost::python::make_function(
[fn](C& self, Args... args) { return (self.*fn)(args...).release(); },
boost::python::return_value_policy<boost::python::manage_new_object>(),
boost::mpl::vector<T*, C&, Args...>()
);
}
/// @brief Wrapper function for SpamFactory::consume(). This
/// is required because Boost.Python will pass a handle to the
/// Spam instance as an auto_ptr that needs to be converted to
/// convert to a unique_ptr.
void SpamFactory_consume(
SpamFactory& self,
std::auto_ptr<Spam> ptr) // Note auto_ptr provided by Boost.Python.
{
return self.consume(std::unique_ptr<Spam>{ptr.release()});
}
BOOST_PYTHON_MODULE(example)
{
namespace python = boost::python;
python::class_<Spam, boost::noncopyable>(
"Spam", python::init<std::size_t>())
.def_readwrite("x", &Spam::x)
;
python::class_<SpamFactory>("SpamFactory", python::init<>())
.def("make", adapt_unique(&SpamFactory::make))
.def("consume", &SpamFactory_consume)
;
}
Interactive Python:
>>> import example
>>> factory = example.SpamFactory()
>>> spam = factory.make("a" * 21)
Spam()
>>> spam.x
21
>>> spam.x *= 2
>>> spam.x
42
>>> factory.consume(spam)
~Spam()
>>> spam.x = 100
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
Boost.Python.ArgumentError: Python argument types in
None.None(Spam, int)
did not match C++ signature:
None(Spam {lvalue}, unsigned int)