I am learning data.table. I have difficulty converting the dplyr join syntax. Can you please recommend the data.table equivalence for the following test cases?
library(data.table)
library(dplyr)
dtProduct <- data.table(
ProductID = c(6, 33, 17, 88, 44, 51),
ProductName= c("Shirt", "Helmet", "Gloves", "Towel", "Chair", "Detergent"),
Price= c(25, 60, 10, 7.5, 135, 16),
key = 'ProductID'
)
set.seed(20141216)
dtOrder <- data.table(
OrderID = sample(1001:9999, 12),
CustomerID = sample(271:279, 12, replace=TRUE),
# NOTE: some non-existent ProductID intentionally introduced
ProductID = sample(c(dtProduct[, ProductID], 155, 439), 12, replace=TRUE),
Qty = sample(1:3, 12, replace=TRUE),
key = 'OrderID'
)
> tables()
NAME NROW NCOL MB COLS KEY
[1,] dtOrder 12 4 1 OrderID,CustomerID,ProductID,Qty OrderID
[2,] dtProduct 6 3 1 ProductID,ProductName,Price ProductID
> dtProduct
ProductID ProductName Price
1: 6 Shirt 25.0
2: 17 Gloves 10.0
3: 33 Helmet 60.0
4: 44 Chair 135.0
5: 51 Detergent 16.0
6: 88 Towel 7.5
> dtOrder
OrderID CustomerID ProductID Qty
1: 1651 275 6 3
2: 2726 272 88 2
3: 3079 275 88 2
4: 3168 274 17 1
5: 4816 277 88 1
6: 4931 278 51 1
7: 5134 274 439 2
8: 5265 272 33 3
9: 7702 275 33 2
10: 7727 279 155 2
11: 8412 273 88 2
12: 9130 271 17 3
Case1: Show Order Details, no-match ProductID are hidden
dtOrder %>%
inner_join(dtProduct, by="ProductID") %>%
transmute(OrderID, ProductID, ProductName, Qty, Price, ExtPrice=Qty*Price)
OrderID ProductID ProductName Qty Price ExtPrice
1 1651 6 Shirt 3 25.0 75.0
2 3168 17 Gloves 1 10.0 10.0
3 9130 17 Gloves 3 10.0 30.0
4 5265 33 Helmet 3 60.0 180.0
5 7702 33 Helmet 2 60.0 120.0
6 4931 51 Detergent 1 16.0 16.0
7 2726 88 Towel 2 7.5 15.0
8 3079 88 Towel 2 7.5 15.0
9 4816 88 Towel 1 7.5 7.5
10 8412 88 Towel 2 7.5 15.0
Case2: Show Order Details, INCLUDING no-match ProductID
dtOrder %>%
left_join(dtProduct, by="ProductID") %>%
transmute(OrderID, ProductID, ProductName, Qty, Price, ExtPrice=Qty*Price)
OrderID ProductID ProductName Qty Price ExtPrice
1 1651 6 Shirt 3 25.0 75.0
2 3168 17 Gloves 1 10.0 10.0
3 9130 17 Gloves 3 10.0 30.0
4 5265 33 Helmet 3 60.0 180.0
5 7702 33 Helmet 2 60.0 120.0
6 4931 51 Detergent 1 16.0 16.0
7 2726 88 Towel 2 7.5 15.0
8 3079 88 Towel 2 7.5 15.0
9 4816 88 Towel 1 7.5 7.5
10 8412 88 Towel 2 7.5 15.0
11 7727 155 NA 2 NA NA
12 5134 439 NA 2 NA NA
Case3: Show Order Errors (Only no-match ProductID)
dtOrder %>%
left_join(dtProduct, by="ProductID") %>%
filter(is.na(ProductName)) %>%
select(OrderID, ProductID, ProductName, Qty)
OrderID ProductID ProductName Qty
1 7727 155 NA 2
2 5134 439 NA 2
Case4: Various Aggregates by ProductID, sort result by TotalSales descending
dtOrder %>%
inner_join(dtProduct, by="ProductID") %>%
group_by(ProductID) %>%
summarize(OrderCount=n(), TotalQty=sum(Qty), TotalSales=sum(Qty*Price)) %>%
arrange(desc(TotalSales))
ProductID OrderCount TotalQty TotalSales
1 33 2 5 300.0
2 6 1 3 75.0
3 88 4 7 52.5
4 17 2 4 40.0
5 51 1 1 16.0
Case5: Various Aggregates by ProductID, sort result by TotalSales descending
- NOTE1: This time, ProductName is displayed along with ProductID
NOTE2: sort by descending TotalSales no longer working (BUG?)
dtOrder %>% inner_join(dtProduct, by="ProductID") %>% group_by(ProductID, ProductName) %>% summarize(OrderCount=n(), TotalQty=sum(Qty), TotalSales=sum(Qty*Price)) %>% arrange(desc(TotalSales)) ProductID ProductName OrderCount TotalQty TotalSales 1 6 Shirt 1 3 75.0 2 17 Gloves 2 4 40.0 3 33 Helmet 2 5 300.0 4 51 Detergent 1 1 16.0 5 88 Towel 4 7 52.5
Thank you very much in advance for any help.
See Question&Answers more detail:os