Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

This question is about the same program I previously asked about. To recap, I have a program with a loop structure like this:

for (int i1 = 0; i1 < N; i1++)
  for (int i2 = 0; i2 < N; i2++)
    for (int i3 = 0; i3 < N; i3++)
      for (int i4 = 0; i4 < N; i4++)
        histogram[bin_index(i1, i2, i3, i4)] += 1;

bin_index is a completely deterministic function of its arguments which, for purposes of this question, does not use or change any shared state - in other words, it is manifestly reentrant.

I first wrote this program to use a single thread. Then I converted it to use multiple threads, such that thread n runs all iterations of the outer loop where i1 % nthreads == n. So the function that runs in each thread looks like

for (int i1 = n; i1 < N; i1 += nthreads)
  for (int i2 = 0; i2 < N; i2++)
    for (int i3 = 0; i3 < N; i3++)
      for (int i4 = 0; i4 < N; i4++)
        thread_local_histogram[bin_index(i1, i2, i3, i4)] += 1;

and all the thread_local_histograms are added up in the main thread at the end.

Here's the strange thing: when I run the program with just 1 thread for some particular size of the calculation, it takes about 6 seconds. When I run it with 2 or 3 threads, doing exactly the same calculation, it takes about 9 seconds. Why is that? I would expect that using 2 threads would be faster than 1 thread since I have a dual-core CPU. The program does not use any mutexes or other synchronization primitives so two threads should be able to run in parallel.

For reference: typical output from time (this is on Linux) for one thread:

real    0m5.968s
user    0m5.856s
sys     0m0.064s

and two threads:

real    0m9.128s
user    0m10.129s
sys     0m6.576s

The code is at http://static.ellipsix.net/ext-tmp/distintegral.ccs

P.S. I know there are libraries designed for exactly this kind of thing that probably could have better performance, but that's what my last question was about so I don't need to hear those suggestions again. (Plus I wanted to use pthreads as a learning experience.)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
588 views
Welcome To Ask or Share your Answers For Others

1 Answer

To avoid further comments on this: When I wrote my reply, the questioner hasn't posted a link to his source yet, so I could not tailor my reply to his specific issues. I was only answering the general question what "can" cause such an issue, I never said that this will necessarily apply to his case. When he posted a link to his source, I wrote another reply, that is exactly only focusing on his very issue (which is caused by the use of the random() function as I explained in my other reply). However, since the question of this post is still "What can make a program run slower when using more threads?" and not "What makes my very specific application run slower?", I've seen no need to change my rather general reply either (general question -> general response, specific question -> specific response).


1) Cache Poisoning
All threads access the same array, which is a block of memory. Each core has its own cache to speed up memory access. Since they don't just read from the array but also change the content, the content is changed actually in the cache only, not in real memory (at least not immediately). The problem is that the other thread on the other core may have overlapping parts of memory cached. If now core 1 changes the value in the cache, it must tell core 2 that this value has just changed. It does so by invalidating the cache content on core 2 and core 2 needs to re-read the data from memory, which slows processing down. Cache poisoning can only happen on multi-core or multi-CPU machines. If you just have one CPU with one core this is no problem. So to find out if that is your issue or not, just disable one core (most OSes will allow you to do that) and repeat the test. If it is now almost equally fast, that was your problem.

2) Preventing Memory Bursts
Memory is read fastest if read sequentially in bursts, just like when files are read from HD. Addressing a certain point in memory is actually awfully slow (just like the "seek time" on a HD), even if your PC has the best memory on the market. However, once this point has been addressed, sequential reads are fast. The first addressing goes by sending a row index and a column index and always having waiting times in between before the first data can be accessed. Once this data is there, the CPU starts bursting. While the data is still on the way it sends already the request for the next burst. As long as it is keeping up the burst (by always sending "Next line please" requests), the RAM will continue to pump out data as fast as it can (and this is actually quite fast!). Bursting only works if data is read sequentially and only if the memory addresses grow upwards (AFAIK you cannot burst from high to low addresses). If now two threads run at the same time and both keep reading/writing memory, however both from completely different memory addresses, each time thread 2 needs to read/write data, it must interrupt a possible burst of thread 1 and the other way round. This issue gets worse if you have even more threads and this issue is also an issue on a system that has only one single-core CPU.

BTW running more threads than you have cores will never make your process any faster (as you mentioned 3 threads), it will rather slow it down (thread context switches have side effects that reduce processing throughput) - that is unlike you run more threads because some threads are sleeping or blocking on certain events and thus cannot actively process any data. In that case it may make sense to run more threads than you have cores.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...