I have done tons of these in the past. The smoothing can be performed many different ways, but the way they are probably doing here is a simple linear approach. This is to say that for each R, G, and B component, they simply figure out the "y = m*x + b" equation that connects the two points, and use that to figure out the components in between.
m[RED] = (ColorRight[RED] - ColorLeft[RED]) / PixelsWidthAttemptingToFillIn
m[GREEN] = (ColorRight[GREEN] - ColorLeft[GREEN]) / PixelsWidthAttemptingToFillIn
m[BLUE] = (ColorRight[BLUE] - ColorLeft[BLUE]) / PixelsWidthAttemptingToFillIn
b[RED] = ColorLeft[RED]
b[GREEN] = ColorLeft[GREEN]
b[BLUE] = ColorLeft[BLUE]
Any new color in between is now:
NewCol[pixelXFromLeft][RED] = m[RED] * pixelXFromLeft + ColorLeft[RED]
NewCol[pixelXFromLeft][GREEN] = m[GREEN] * pixelXFromLeft + ColorLeft[GREEN]
NewCol[pixelXFromLeft][BLUE] = m[BLUE] * pixelXFromLeft + ColorLeft[BLUE]
There are many mathematical ways to create a transition, what we really want to do is understand what transition you really want to see. If you want to see the exact transition from the above image, it is worth looking at the color values of that image. I wrote a program way back in time to look at such images and output there values graphically. Here is the output of my program for the above pseudocolor scale.
Based upon looking at the graph, it IS more complex than a linear as I stated above. The blue component looks mostly linear, the red could be emulated to linear, the green however looks to have a more rounded shape. We could perform mathematical analysis of the green to better understand its mathematical function, and use that instead. You may find that a linear interpolation with an increasing slope between 0 and ~70 pixels with a linear decreasing slope after pixel 70 is good enough.
If you look at the bottom of the screen, this program gives some statistical measures of each color component, such as min, max, and average, as well as how many pixels wide the image read was.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…