I'm attempting to train multiple keras
models with different parameter values using multiple threads (and the tensorflow
backend). I've seen a few examples of using the same model within multiple threads, but in this particular case, I run into various errors regarding conflicting graphs, etc. Here's a simple example of what I'd like to be able to do:
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Dense
from keras.models import Sequential
sess = tf.Session()
def example_model(size):
model = Sequential()
model.add(Dense(size, input_shape=(5,)))
model.add(Dense(1))
model.compile(optimizer='sgd', loss='mse')
return model
if __name__ == '__main__':
K.set_session(sess)
X = np.random.random((10, 5))
y = np.random.random((10, 1))
models = [example_model(i) for i in range(5, 10)]
e = ThreadPoolExecutor(4)
res_list = [e.submit(model.fit, X, y) for model in models]
for res in res_list:
print(res.result())
The resulting error is ValueError: Tensor("Variable:0", shape=(5, 5), dtype=float32_ref) must be from the same graph as Tensor("Variable_2/read:0", shape=(), dtype=float32).
. I've also tried initializing the models within the threads which gives a similar failure.
Any thoughts on the best way to go about this? I'm not at all attached to this exact structure, but I'd prefer to be able to use multiple threads rather than processes so all the models are trained within the same GPU memory allocation.
See Question&Answers more detail:os