Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Data I'm importing describes numeric measurements taken at various locations for more or less evenly spread timestamps. sometimes this "evenly spread" is not really true and I have to discard some of the values, it's not that important which one, as long as I have one value for each timestamp for each location.

what I do with the data? I add it to a result data.frame. There I have a timestamp column and the values in the timestamp column, they are definitely evenly spaced according to the step.

timestamps <- ceiling(as.numeric((timestamps-epoch)*24*60/step))*step*60 + epoch
result[result$timestamp %in% timestamps, columnName] <- values

This does NOT work when I have timestamps that fall in the same time step. This is an example:

> data.frame(ts=timestamps, v=values)
                   ts         v
1 2009-09-30 10:00:00 -2.081609
2 2009-09-30 10:04:18 -2.079778
3 2009-09-30 10:07:47 -2.113531
4 2009-09-30 10:09:01 -2.124716
5 2009-09-30 10:15:00 -2.102117
6 2009-09-30 10:27:56 -2.093542
7 2009-09-30 10:30:00 -2.092626
8 2009-09-30 10:45:00 -2.086339
9 2009-09-30 11:00:00 -2.080144
> data.frame(ts=ceiling(as.numeric((timestamps-epoch)*24*60/step))*step*60+epoch,
+ v=values)
                   ts         v
1 2009-09-30 10:00:00 -2.081609
2 2009-09-30 10:15:00 -2.079778
3 2009-09-30 10:15:00 -2.113531
4 2009-09-30 10:15:00 -2.124716
5 2009-09-30 10:15:00 -2.102117
6 2009-09-30 10:30:00 -2.093542
7 2009-09-30 10:30:00 -2.092626
8 2009-09-30 10:45:00 -2.086339
9 2009-09-30 11:00:00 -2.080144

in Python I would (mis)use a dictionary to achieve what I need:

dict(zip(timestamps, values)).items()

returns a list of pairs where the first coordinate is unique.

in R I don't know how to do it in a compact and efficient way.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
464 views
Welcome To Ask or Share your Answers For Others

1 Answer

I would use subset combined with duplicated to filter non-unique timestamps in the second data frame:

R> df_ <- read.table(textConnection('
                     ts         v
1 "2009-09-30 10:00:00" -2.081609
2 "2009-09-30 10:15:00" -2.079778
3 "2009-09-30 10:15:00" -2.113531
4 "2009-09-30 10:15:00" -2.124716
5 "2009-09-30 10:15:00" -2.102117
6 "2009-09-30 10:30:00" -2.093542
7 "2009-09-30 10:30:00" -2.092626
8 "2009-09-30 10:45:00" -2.086339
9 "2009-09-30 11:00:00" -2.080144
'), as.is=TRUE, header=TRUE)

R> subset(df_, !duplicated(ts))
                   ts      v
1 2009-09-30 10:00:00 -2.082
2 2009-09-30 10:15:00 -2.080
6 2009-09-30 10:30:00 -2.094
8 2009-09-30 10:45:00 -2.086
9 2009-09-30 11:00:00 -2.080

Update: To select a specific value you can use aggregate

aggregate(df_$v, by=list(df_$ts), function(x) x[1])  # first value
aggregate(df_$v, by=list(df_$ts), function(x) tail(x, n=1))  # last value
aggregate(df_$v, by=list(df_$ts), function(x) max(x))  # max value

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...