You have to provide overrides for the functions for consuming the first N
(usually one) arguments.
void foo() {
// end condition argument pack is empty
}
template <class First, class... Rest>
void foo(First first, Rest... rest) {
// Do something with first
cout << first << endl;
foo(rest...); // Unpack the arguments for further treatment
}
When you unpack the variadic parameter it finds the next overload.
Example:
foo(42, true, 'a', "hello");
// Calls foo with First = int, and Rest = { bool, char, char* }
// foo(42, Rest = {true, 'a', "hello"}); // not the real syntax
Then next level down we expand the previous Rest
and get:
foo(true, Rest = { 'a', "hello"}); // First = bool
And so on until Rest
contains no members in which case unpacking it calls foo()
(the overload with no arguments).
Storing the pack if different types
If you want to store the entire argument pack you can use an std::tuple
template <class... Pack>
void store_pack(Pack... p) {
std::tuple<Pack...> store( p... );
// do something with store
}
However this seems less useful.
Storing the pack if it's homogeneous
If all the values in the pack are the same type you can store them all like this:
vector<int> reverse(int i) {
vector<int> ret;
ret.push_back(i);
return ret;
}
template <class... R>
vector<int> reverse(int i, R... r) {
vector<int> ret = reverse(r...);
ret.push_back(i);
return ret;
}
int main() {
auto v = reverse(1, 2, 3, 4);
for_each(v.cbegin(), v.cend(),
[](int i ) {
std::cout << i << std::endl;
}
);
}
However this seems even less useful.