How to round floats to integers while preserving their sum? has the below answer written in pseudocode, which rounds a vector to integer values such that the sum of the elements in unchanged and the roundoff error is minimized. I'd like to implement this efficiently (i.e. vectorized if possible) in R.
For example, rounding these numbers yields a different total:
set.seed(1)
(v <- 10 * runif(4))
# [1] 2.655087 3.721239 5.728534 9.082078
(v <- c(v, 25 - sum(v)))
# [1] 2.655087 3.721239 5.728534 9.082078 3.813063
sum(v)
# [1] 25
sum(round(v))
# [1] 26
Copying pseudocode from answer for reference
// Temp array with same length as fn.
tempArr = Array(fn.length)
// Calculate the expected sum.
arraySum = sum(fn)
lowerSum = 0
-- Populate temp array.
for i = 1 to fn.lengthf
tempArr[i] = { result: floor(fn[i]), // Lower bound
difference: fn[i] - floor(fn[i]), // Roundoff error
index: i } // Original index
// Calculate the lower sum
lowerSum = lowerSum + tempArr[i] + lowerBound
end for
// Sort the temp array on the roundoff error
sort(tempArr, "difference")
// Now arraySum - lowerSum gives us the difference between sums of these
// arrays. tempArr is ordered in such a way that the numbers closest to the
// next one are at the top.
difference = arraySum - lowerSum
// Add 1 to those most likely to round up to the next number so that
// the difference is nullified.
for i = (tempArr.length - difference + 1) to tempArr.length
tempArr.result = tempArr.result + 1
end for
// Optionally sort the array based on the original index.
array(sort, "index")
See Question&Answers more detail:os